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1. INTRODUCTION

1.1 Objective of This Document

The Shuttle Approach and Landing Tests (ALT) will provide

a large quantity of data on the shuttle navigation system

capabilities and performance. It is not practical to assume

that all aspects of the navigation system can be tested during

the flight itself. For example, it is expected that many

features of the redundancy management system will not be exercised

during the ALT. The use of effective post-test processing of

recorded navigation sensor data can greatly increase the informa-

tion return from the ALT and from all tests that follow by

providing the capability for evaluating the existing navigation

system and for exercising and evaluating alternative versions of

the navigation system. This can be done without altering or

increasing the complexity of the actual tests. It is the purpose

of this document to define cost-effective approaches to such

post-test data analysis.

One of the design goals chosen for the development of the

post-test analysis techniques should be to consider approaches

that are useful both for the ALT and for the mission data analysis

of the shuttle after it has become operational. This will greatly
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aid the performance evaluation and design-modification processes

during the early operational phases of the shuttle program. In

this manner, tools developed for.the ALT data analysis will

become more cost-effective by way of maximizing their usefulness

in other phases of the shuttle development.

The post-test data analysis activities, as perceived in

this document, are categorized as follows:

Quick-Look Processing: Quick-look processing (QLP), as the

the term implies, is the preliminary, rapid processing of

recorded data. This includes such activities as data

listing and plotting, sensor status reporting, failure

analysis, and navigation mode monitoring throughout the

flight. This analysis category allows for.a rapid

determination of test performance as it isolates the

major problem areas and other unusual events.

Post-Flight Navigation Processing: Post-flight navigation

processing (PFNP) refers herein to the execution of the

navigation functions through the use of flight recorded

data. Post-flight versions of the operational filters,

navigation functions, and redundancy management functions

are used to recreate the navigation portion of the test.

By altering data and/or navigation software formulations,

evaluation of all aspects of the navigation software can

1-2
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be tested in an operational environment. In addition,

alternative formulations can be tested.

Error Isolation Processing: Error isolation processing

(EIP) refers to the determination of the magnitudes of

those error sources that contribute to navigation error.

By the isolation of the error contributors to a component

level, problem areas can be identified. In addition, the

determination of component errors can greatly aid in the

detailed evaluation of the redundancy management formula-

tion.

Each of these three areas of post-test data processing is

described in this report. Included in the descriptions are their

respective advantages, disadvantages, uses, design, operation,

and data requirements.

1.2 Format of the Report

In setting forth the post-test data analysis techniques for

ALT navigation data, the overall post-test processor requirements

are described first. In that requirements section, operational

and design requirements are discussed separately, followed by the

data input requirements and the requirements on the software test.

In Section 3, the post-test data processing is described in

three segments based on the natural test sequence: from quick-
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look analysis, to post-flight navigation processing, to error

isolation processing. In each of the three segments, the level

of detail includes a functional requirements description and a

description of the software requirements. Section 3 concludes

with a summary, emphasizing the tradeoffs that must remain open

and subject to analysis until final definition has been achieved

in the shuttle data processing system and the overall ALT plan.

A development plan for the implementation of the ALT post-

test navigation data.processing is presented in Section 4. This

plan is a necessary adjunct of this report so as to show the

feasibility of having the system as described herein completed

in time to support the shuttle approach and landing tests. The

document closes with a summary and conclusions.
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2. POST-TEST NAVIGATION SYSTEM REQUIREMENTS

2.1 Operational Requirements

The ALT phase of the Orbiter development will qualify the

vehicle for the last and most critical phase of its operational

use, namely, approach and landing. To accomplish this test, the

Orbiter will be carried aloft piggy-back on a modified Boeing 747

for one or more captive flights. Following these captive flights,

the Orbiter will be carried aloft and released for a free-fall

duplication of the approach and landing.

Because of the cost of each flight, in terms of support

personnel and systems, the ALT will place a premium on rapid and

efficient attainment of test objectives. All design features

necessary should be incorporated in the post-test data processing

to ensure that all possible information about the navigation

system performance is extracted from each flight, and that no

flight test or flight test phase needs to be duplicated because

of a data processing or analysis deficiency, whether in concept

or in implementation.

Because of the need to optimize carefully both the status

of the Orbiter systems after each flight and the flight test plan

itself, it is not anticipated that fast turnaround between
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individual flights will be the rule. Nevertheless, because of

the need to identify immediately the sources of anomalies,

discrepancies, and failures, it is anticipated that severe

schedule pressures will be applied to the test data analysis

operation following each flight. Following anomaly source

identifications, it will often be necessary to require hardware

or software modifications under conditions of limited time and

approaching deadlines. Original vendors will be called in,

and there will be redesign, simulation, and repeats of qualifica-

tion tests. All these activities place tremendous pressures on

early and efficient problem diagnosis.

In the light of these and other considerations, the next

subsection discusses the design requirements for the post-ALT

data analysis.

2.2 Design Requirements

2.2.1 General

The navigation data analysis system must have a clear,

simple method for handling all parameters that might vary during

the entire ALT phase. This means that measurement lists, gains,

biases, units, must all be alterable under proper project control.

Alteration must include timely specification in the flight test

plan, loading, verification, and documentation. The software

system must be able to run in a pre-flight checkout mode with

2-2
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sample or previous test data so as to provide an unambiguous

"ready" status in support of the flight.

2.2.2 Front End

The front end of the system should be a central file

maintenance module. As input, this activity should be able to

accept tapes or other machine-readable forms from as many different

data sources as possible, with the main design emphasis being

placed upon telemetry and onboard recordings from the Orbiter

data processing system (DPS). Additionally, the maintenance

module must be able to accommodate tapes containing downlinked

data from the telemetry station, if any; tapes from the acceptance

checkout equipment (ACE) system in the hangar; and tapes from

the ground-based tracking organization(s).

The primary design aim of the central file maintenance

module is to place data of various formats into a data base that

would be accessible by numerous analysis processes. There is a

strong design requirement to develop those analysis processes into

a common higher-order language, as a matter of cost efficiency in

program development.

The maintenance module should be self-reporting and self-

documenting in its performance. It should output a post-run

analysis that will help with data control and analysis in the

succeeding phases. Specifically, the post-run output should
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describe the input tape and format, the output tapes and format,

the anomalies, gaps, etc., discovered, and the clear failures

discovered on a first-run basis.

2.2.3 Blanking and Blending

Another front end-function involves the ability to prepare

pseudo-flight tapes for the purpose of simulating the presence

or absence of selected data categories. This capability would

enable study of alternative test flight scenarios when a major

sensor item has failed, is restored, or has been modified. The

inputs to the blanking and blending module would contain the

preprocessed flight tapes from the maintenance module; simulated

time histories of sensor data; and miscellaneous instructions.

The output would be a new, pseudo-flight tape containing modified

time histories. This new output tape can be written:

a. in the same standard format as the input tape if

substitutions only are involved;

b. in longer standard format if supplemental time

histories are added; and

c. in a shorter standard format if there is blanking

of certain parameters.

As in the case of the maintenance module, the blanking and

blending module should contain a self-documenting listing of the

input or source tapes, and the modifications to be accomplished.

2-4
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2.2.4 Specific Processor Design Requirements

The post processors must be able to handle data over the

entire operational.range of the shuttle ALT. The processors must

also be simple to use and modify and must have sufficient

commonality with the operational software (variable names, algorithm

formulation, etc.) to allow easy modification of the operational

software based on post-test results. The following text presents

specific constraints that must be placed on the post-test software.

a. The data analysis processors must be able to handle

data obtained from the following ALT mission characteristics:

(1) Maximum shuttle speed - 1,600 fps

(2) Maximum shuttle altitude - 70,000 ft

(3) Maximum shuttle load factor - 2 g

These constraints have been defined to assume adequate post-test

processor algorithm formulation and precision.

b. The post-test processors must be capable of

simultaneously utilizing the data from the following sensors:

(1) 3 Inertial Measurement Units

(2) 3 TACAN receivers

(3) 3 MSBLS receivers

(4) 3 Air Data Units

(5) 2 Radar Altimeters
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(6) Theodolite Ground Tracking Data

(7) C-Band Radar Ground Tracking Data

The requirement for simultaneous use of this data in the post-

test processors is based on the desire to use the post-flight

processor (see Section 3.2) as a method of evaluating redundancy

management algorithms.

c. The post-test processors must be capable of processing

multiple input tapes. They must also be capable of accepting

flight-recorded or downlink-recorded shuttle data. This would

permit maximum utilization of available data.

d. The post-test processors should be constructed in a

structured top-down manner. This approach provides increased

program readability and maintainability. A major goal of this

approach is to minimize the time required to change portions 
of

the post-test processors to reflect changes in output desired,

candidate navigation or redundancy management algorithms to be

tested, etc.

e. The post-test processors should also be constructed

using the HAL language. This requirement is most critical for

the post-flight processor. As envisioned (see Section 3.2), the

post-flight processor contains a post-flight version of 
the

operational navigation and redundancy management algorithms. 
The

use of the operational computer language, HAL, would facilitate

2-6

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840



verification of the similarity between operational and post-

flight versions. In addition, any algorithm changes that are

made and tested post-flight and are to be incorporated into the

operational version can be made most accurately by using the same

computer language for the operational and post-flight computer

programs.

2.3 Data Collection Requirements

Three major types of data, and a number of minor types,

must be collected for the design as presently envisioned. The

major types are the preset navigation parameters and constants,

the shuttle navigation sensor data recorded throughout the flight,

and the ground tracking trajectory data. This section presents a

preliminary list of variables for each of the major data types.

The few minor types are introduced within the functional

descriptions found in Section 3.

a. The preset navigation parameters and constants are time

invariant variables such as earth rate, conversion factors, pad

loaded constants, etc. Many of these parameters are known apriori,

but others must be recorded at the time of the pad load to ensure

an exact duplication of the on-board system. A list of these

parameters (which will be used to generate a parameter file tape;

see Section 3.2) is presented in Table 2-1*.

The data lists presented in Tables 2-1 and 2-2 are based on

variables presented in the document "Approach and Landing Test
Level C Requirements for Navigation", Sept. 3, 1974.
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Table 2-1

Present Navigation Parameters and Constants

Variable Name Data Variable Description
Type

ALT MLSAZ Scalar Altitude above ref.

T- ellipsoid of MLS
ALT MILSR Scalar azimuth, elevationand

ALT MLSEL Scalar range radars and the
TACAN station,

ALT TACAN Scalar respectively

AZ RADAR Scalar Bearing from true north

BEARING of MLS azimuth radar
boresight axis

BARO DATA GOOD Bit Bit set at start- of
measurement processing
sequence to indicate

presence of good baro
altimeter data

BIASACCl(2,3) Vec(3) Acceleration bias-vectors
-- for the 3 states

BIAS ALIGN1(2,3) Vec(3) IMU misalignment biases
for the 3 states

BIAS AZMLS Scalar
Initial values of the

BIAS BARO Scalar sensor biases for MLS

BIAS D:E Scalar measurements and TACAN
measurements and BARO

BIAS ELMLS Scalar measurement

BIAS -MLSRANGE Scalar

BIAS VOR Scalar

DELR RA-'P Scalar Distance over which
velocity weighting of
radar altimeter is ramped
from 0 to its maximum
value

e Scalar Constant natural log
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Table 2-1 (Continued)

Variable Data Variable Description
Type

ELLIPT Scalar Earth Ellipticity
constant

EL RADAR Scalar Bearing from true north

BEARING- of MLS elevation radar
boresight axis

H FBAR Scalar Altitude below which baro
is inhibited. Automatic
mode

H INBAR Scalar Altitude at which baro
measurements are
initiated. Automatic
mode

H RADALT Scalar Altitude below which
radar altimeter is
initiated

J2 Scalar Value of J2 constant in
earth's gravity model

K RES EDIT Scalar Scale factor on filter
mean square residual used
in filter residual edit
test

K UND WGT Scalar Measurement underweighting
factor. Multiplies
BT E B which is then
added to VAR.

K VAR AZMLS Scalar Scale factors on

K VAR ELMLS Scalar respective sensor
variances used in LAND

K VAR_ RLS Scalar FILTER residual edit test.

K VAR RADALT Scalar
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Table 2-1 (Continued)

Variable Name Data Variable Description
Type

LATMLSAZ Scalar Geodetic latitude of
LAT MLSEL Scalar appropriate MLS sensor

radar location
LAT MLSR Scalar

LAT TACAN Scalar Geodetic latitude of
TACAN radar location

LONG -MLSAZ Scalar Longitude of appropriate
MLS radar location

LONG MLSEL Scalar

LONG MLSR Scalar

LONG TACAN Scalar Longitude of TACAN radar
location

R GO RAMP Scalar Value of slant range
between shuttle and
landing site below which
radar altimeter data is
processed in the filter

R NAVBASE Vec(3) Navigation base location
BODYFR in body coordinate

system

R RADALT Vec(3) Radar altimeter location
BODYFR i- n body coordinate

system

R TACAN EF Vec(3) TACAN position vector

R TACANT BODYF Vec(3) Shuttle TACAN receiver
location in body
coordinate system

R MLS ANT Vec(3) Shuttle MLS receiver loca-
BODYFR - tion in body coordinate

system

R RMLS EF Vec(3) MLS range radar position
vector
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Table 2-1 (Continued)

Variable Name Data Variable Description
Type

RADALT BIAS Scalar Radar altimeter bias

RGO AZMLS ZERO Scalar Fixed weighting vector
R E ZER calar range scale factors for

RGO ELMLS ZERO Scalar MLS azimuth and elevation
measurements respectively

RE Scalar Earth equatorial radius

RHO SEA LEVEL Scalar Sea level atmospheric
density

R RDAR BEARING Scalar Bearing from ture north
of MLS range radar
boresight axis

r GRAV Scalar Earth radius used for
gravity oblateness term

SCALE HGT Scalar Alatitude scale height
for exponential model of
atmospheric density

VAR UNMOD ACC Scalar Variance of unmodeled
AT acceleration times time

step. Used in calculation
of process noise matrix
for velocity error due to
platform misalignment

VAR ACCQUANT Scalar Variance of accelerometer
quantization error. Used
in calculation of process
noise matrix

VAR DRIFT DT Scalar Variance of error in gyro
drift compensation. Used
in calculating process
noise matrix for platform
misalignment states.
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Table 2-1 (Continued)

Variable Data Variable Description
Type

VAR AZMLS Scalar

VAR DME Scalar A-priori sensor measure-
- Sment error variances

VARELMLS Scalar (VAR Hl and VAR H2 used

VAR HI Scalar for BARO measurements).

VAR H2 Scalar

VAR RADALT Scalar

VAR RMLS Scalar

VAR VOR Scalar

V RHI Scalar Upper and lower limits
respectively of relating

V RLO Scalar wind velocity between
which BARO updating is
prohibited.

C Scalar Difference criteria in
AZ MLS range, azimuth and

CEL Scalar elevation measurement
change check,

eR Scalar respectively

eTAG Scalar Difference criteria used
to determine if state
vectors should be
extrapolated (from T FILT
to T SENSORS) to compute
measurement residuals

C LS Scalar Difference criteria to
T MLS force IMLS azimuth or

elevation measurement
incorporation even though
the measurement is within
CAZ or EEL of the previous
measurement

I Scalar Universal .gravitational
constant for the earth
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Table 2-1 (Continued)

Variable Name Date Variable Description
Type

SScalar PI

a ASCENT Vec(12) Represents the one-sigma
values of the initial
filter covariance matrix
diagonal elements. In
local vertical coordinate
frame (u,v,w); used in
ASNT INITIALIZE

a ACC Scalar RMS acceleration bias for
each of the three filter
states. a ACC same for
each of the three accele-
ration biases of each
state

a AZMLS Scalar

a DME Scalar RMS values of particular

a ELMLS Scalar sensor measurement bias

a RMLS Scalar

a VOR Scalar

a BARO Scalar Altitude dependent RIS
value for BARO measure-
ment

a BARO ZERO Scalar RMS BARO altimeter error
at zero altitude

a UND WGT Scalar Measurement underweighting
criterion
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Table 2-1 (Continued)

Variable Name Data Variable Description
Type

T ACC Scalar Acceleration measurement

T AZMLS Scalar MLS azimuth measurement

T BARO Scalar Baro measurement

T DME Scalar TACAN DME measurement

T ELMLS Scalar MLS elevation measurement

T RMLS Scalar MLS range measurement

T VOR Scalar TACAN VOR measurement

w ALT RWTD Scalar Prestored gain for radar
w-ALTT altimeter measurements in

_ALTDOT the altitude and altitude
rate channel (max value
of altitude rate gain).
Landing phase

w ALTDOT RWTD Scalar Value of altitude rate
filter gain for radar

... .- - altimeter measurements in

landing phase

wE Scalar Earth rotation rate

" LAND AZMLS Vec(6). Prestored gain vectors for
MLS azimuth, elevation,

S _LANDELMLS Vec(6) and range measurements
w LAND RMLS Vec(6) respectively in landing

phase filter. (Position
and velocity updating) in
the.respective radar
coordinate systems
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b. The shuttle navigation sensor data includes the navigation

parameters that must be recorded throughout the flight. This

includes sensor outputs with time tags, mode status switches, data

good flags, and selected computed navigation parameters like the

shuttle position vector from the navigation state selection filter.

A preliminary list of those parameters required for post-flight

processing is presented in Table 2-2. The assumption is made

that these parameters are recorded at a rate of AT_AVG_G_ENTRY.

c. The ground tracking trajectory data is an independent

trajectory as determined from C-band and/or cinetheodolite data

with associated time reference. It is assumed that that data will

be presented in a processed form.

The lists of data collection requirements presented in

this section define a baseline for the presently-envisioned post-

test processors. Variations in this list will occur as the

processor design develops further. In the meantime, this list

will be useful as a preliminary definition of the data recording

requirements.
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Table 2-2

Shuttle Navigation Sensor Data

Variable Name Data Variable Description.
Type

AZMLS EDIT Bit On-indicates MLS azimuth
measurement has failed
filter residual edit test

AZMLS EDIT Bit Allows manual override to
OVERRIDE force MLS azimuth measure-

ment incorporation even
though filter residual
edit .test was not passed

AZMLS READ Scalar .MLS azimuth sensor .reading

BARO MODEL OF Bit If on, current nav panel
THE-MONTH- BARO model is used in

the filter

Data parity bit

INS attitude from INS.

Airdata pressure.

Temo me.asurement

Clock time for sync with
ground track

BARO EDIT Bit On-indicates BARO measure-
ment has failed filter
residual edit test

BARO EDIT Bit Allows manual override of
OVERRIDE- filter residual edit to

force incorporation of
BARO data

BARO READ .. Scalar BARO sensor reading
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Table 2-2 (Continued)

Variable Name Data Variable Description
Type

DG AZMLS Bit

DG BARO Bit Data good discretes from
sensor reads

DG DME Bit

DG EL4LS Bit

DG RADALT Bit

DG RMLS Bit

DG VOR Bit

DME EDIT Bit On-indicates DMIE measure-
ment failed filter
residual edit test

DME EDIT Bit Switch to force TACAN
OVERRIDE . range measurement

incorporation independent
of filter residual edit
test

DME READ Scalar TACAN DME sensor reading

DOBARO NAV . Bit Switch which indicates

DO MLS NAV - Bit - - -- which sensor measurement
is to be processed

DOTACANNAV Bit

DO RADALT NAV

EDIT FLAG Bit Local variable. On-
indicates that the sensor
measurement being
processed has failed
filter residual edit test

ELMLS EDIT Bit: On-indicates MLS elevationi
measurement has failed
filter residual edit

ELMLS EDIT Bit Allows manual override of

OVERRIIDE filter residual edit test
to force incorporation ot
MLS elevation measurement
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Table 2-2 (Continued)

Variable Name Data Variable Description
Type

ELMLS READ Scalar MLS elevation sensor
reading

IMU FAIL Boolian From IMU RM module.
Indicates which IMU or
combination of IMU's has
failed

MANUAL EDIT Bit Local variable in ENTRY
OVERRYDE - FILTER allows manual

override of filter
residual edit test
allowing measurement
incorporation

.MANUAL BARO Bit
PRESENT MODE Allows manual presenta-

MANUAL TAC MLS_ Bit tion of navigation sensor
PRESENT MODE data for measurement
MANUAL RAPDALT Bit

-- PRESENT MODE processing
Bit

MANUAL BARO Bit Switch settings on to
select BARO, TACAN, or

MANUAL TAC MLS Boolian MLS or RADAR altimeter

MANUAL RADALT Bit respectively

MLS TIME READ Scalar Time associated with MLS
sensor reads

MLS ID Scalar Used in identifying MLS
stations so that pertinent
information (locations of
range, az, el, radars,
etc.) can be obtained from
stored tables

RADALT EDIT Bit On-indicates radar
altimeter measurement has
failed filter residual
edit
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Table 2-2 (Continued)

Variable Name Data Variable Description
Type

RADALT EDIT Bit Allows manual override of

OVERRIDE filter residual edit for
radar altimeter measure-
ments

RADALT READ Scalar Radar altimeter sensor
read

RMLS EDIT Bit On-indicates MLS range
measurement has failed
residual edit

RMILS EDIT Bit Allows manual override of

OVE RRIDE - -filter residual edit test
for MLS range measurements

RMLS READ Scalar MLS range sensor read

r MID Vec.(3) Shuttle position vector
from navigation state
selection filter

r ONE(TWO, Vec(3) Current shuttle position

THREE) vectors (3 states)

SENS TIME READ Scalar MTU sensor read time

TACAN ID Scalar Used. to identify TACAN
stations whose measure-
ments are to be processed

T BARO Scalar Time of BARO, TACAN (VOR,

T TACAN Scalar DME) and 'radar altimeter
T R LT Scalar sensor read respectively

T RADALT Scalar

T COV Scalar Time tag of filter
covariance (also used as
dummy local variable)
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Table 2-2 (Continued)

Variable Name Data Variable Description
Type

T EF AZMLS Scalar Set at start of measure-
EFE Scalar ment processing sequence

so that a consistent set
T EF RMLS Scalar of data is used in the

measurement processing
cycle

T FILT Scalar Time associated with
r FILT1, v FILT1, etc.

T IMU Scalar Time of IMU read'

T SENSORS Scalar Set at start of each
measurement processing
sequence; sensor reads
time

T STATE Scalar Time associated with
current shuttle state
vectors, r ONE(TWO,THREE)
and v ONE (_TWO, THREE)

VOR EDIT Bit ON-indicated that VOR
measurement has failed
filter residual edit

VOR EDIT Bit Allows manual override of
OVERRIDE filter residual edit to

force incorporaticn of
VOR measurement data

v IMU lCURRENT Vec(3) Currently read (T IMU)
-IMU2 ,MU3) accumulated velocity

counts from each IMU

v MID Vec(3) Shuttle velocity vector
from navigation state
selection filter. Used
for guidance calculation
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Table 2-2 (Continued)

Variable Name Data Variable Description
Type

v ONE(TWO, Vec(3) Current shuttle velocity
THREE) vectors (3 states)

AT AZMLS Scalar Time intervals between
measurements used in time

ATELMLS Scalar scaling the weighting

AT RM4LS Scalar vectors for the appropriate
sensors in the landing

AT_ RAD Scalar phase filter

AV IMUl (IMU2, Vec(3) Sensed Av from each IMU

IMU3) over AT_IMU interval

AT IMU
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2.4 Software Checkout

Development and verification of post-flight processing

activity requires the use of proper management organization,

coordination and control techniques. Quality control measures should

be enforced throughout the development effort. These controls deal

specifically with test level control, data base control, test case

generation, design change control, and software/hardware inter-

face control.

The verification of computer programs is greatly enhanced by

the readability characteristics of the HAL programming language

and by the use of top-down programming techniques. This allows

program testing to be conducted in a purposeful, methodical way,

utilizing a three-level test plan:

a. Unit Design Verification (Level 0) - The objective of a

Level 0 verification is to validate the lowest-level functional

units. Each unit is required to compile successfully and is

further validated by a desk-check of the coding. Input/output

tests should be utilized, as appropriate, to verify proper control

flow, numerical results, stability, convergence, scaling, and

range, etc.

b. Module Design Verification (Level 1) - Level 1 tests are

designed and executed as appropriate. The objective of Level 1

testing is to test related groups or strings of software units

that represent a higher level of complexity. Applications functions
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are integrated. These tests verify inter-unit communications and

control, name scope, and parameter passage. Preplanned test cases

would be used to provide a "calibration standard" aginast which

results can be evaluated.

c. System Design Verification (Level 2) - Testing at Level 2

involves the processing of simulated or real flight data by the

complete system. This level requires an almost totally-integrated

system, interfaced with its environment. Such testing reveals

errors due to conflicts introduced by data-sharing convention

violations, range of input values, sequencing requirements and

interphase communications and control. Generated data should be

evaluated and verified through use of post-processing editing

software or by visual inspection of the results.

For the error isolation processor (see Section 3.3), it is

required that the simulated nav sensor error sources be contained

within the estimated + la band about the values of those error

sources estimated by the EIP. Depending on the trajectory, however,

some of the error sources will not be observable. This will be

reflected in large values for the estimated variances of those

states, thus negating the value of the above suggested test

criterion. It is therefore important that one sufficient set of

simulated trajectories, which would make all error sources

observable at one time or another, be processed in verifying the

EIP.
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This three-level test sequence should be followed by acceptance

tests conducted at the intended residence program facility. These

tests would validate the interfacing of the system with its

envisioned environment, allowing the user to confirm compliance of

the delivered program with its specifications.
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3. POST-TEST NAVIGATION PROCESS REQUIREMENTS

The post processing of recorded navigation data can greatly

improve the efficiency and information return from the shuttle

approach and landing tests (ALT). To maximize this return, early

consideration must be given to the types of processing desired so

that the processing concepts might have an appropriate impact on

the data collection processes for the tests. Toward that end,

this chapter describes post-test processing to a level of detail

sufficient to outline its impact on the overall shuttle program.

Three categories of post-test data processing are presented

in this chapter: quick-look processing (QLP), post-flight naviga-

tion processing (PFNP), and error isolation processing (EIP). For

each category, the functional requirements and the software

requirements are provided.

Figure 3-1 shows an overview of the interrelationship among

the three categories of test described in this document.

3.1 Quick-Look Processor (QLP)

The quick-look processor (QLP) serves two broad post-flight

navigation data processing functions, each to be carried out

immediately following the flight test: 1) the QLP serves as the

central data distributor and in a maintenance function; and 2) it
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will create and distribute all first-cut navigation evaluation

reports (i.e., the so-called 24-hour reports). A description

of the activities within these two functions is presented below.

3.1.1 Functional Requirements

The inputs to the QLP are all flight navigation recordings,

including: in-flight navigation data recordings, both on-board

and telemetry; preset navigation parameters; and ground based

tracking data. (See Section 2.3 for the detailed listing of those

inputs.) The outputs from the QLP are: 1) properly formatted

versions of the flight data, which will be distributed to naviga-

tion analysis and design activities, including the two described.

in Sections 3.2 and 3.3 herein; and 2) a series of flight naviga-

tion summary reports, which will be distributed to any organiza-

tion having technical responsibility for the performance of

flight navigation functions.' These two output requirements place

four functional requirements on the QLP, described in succeeding

paragraphs.

3.1.1.1 Creation and Maintenance of a Central Navigation Data

File - A central data maintenance function is essential to the

orderly distribution of complete and readable flight data. Such

a function alleviates the following potential time-consuming and
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costly problems for designers and analysts:

a. inability to locate data,

b. no time reference,

c. inability to synchronize two data streams,

d. improper scaling,

e. noisy data,

f. missing data points,

and a host of other difficulties. In addition, the central

processor controls the amount of post-flight data processing to

include only that which is necessary. It eliminates any require-

ment for data filing, or any other controlled handling, on the

part of analysts. (This can be accomplished through the maintenance

of a master copy of all flight data at the central facility.) It

assures a common time frame for all data streams. It standardizes

all formats. It helps to assure no duplication of effort. It

avoids misplacing of data. Also, it minimizes the number of

constraints on the flight data-recording equipment specifications,

in that the burden of a common format is on the central facility,

not on the equipment designers.

3.1.1.2 Creation and Distribution of Flight Navigation Summary

Reports - The primary post-flight operational requirement is to

enable the many design and analytic talents to work on necessary

modifications to the navigation system as soon after the flight

test as possible. This requires the immediate creation of summary
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navigation reports to tag anomalies and summarize the performance

of all navigation functions. And, because of the various and

different perspectives of the groups concerned with navigation,

there is a requirement for a number of different summary views

of the flight (e.g., sensor people will be concerned with readout

performance, computer people with mode switching, and so forth).

The second QLP requirements is, therefore, a set of

summary reports, each with a different perspective of the flight.

That set of reports represents an organized statement of the

flight navigation performance.

These reports should be created within 24 hours of the

flight, or at least within 24 hours of the availability of

recordings, in order to expedite analysis of the flight.

3.1.1.3 Preliminary Analysis of Unusual Events - The above-

mentioned summary reports will, among other things, flag unusual

(unexpected or undesired) events like failures. As a third

requirement on the QLP, the post-flight data processing specifica-

tion should include a list of supplementary processing activities,

each activity within the list dictated by the nature of a

particular unusual event. For example, a particular sensor failure

might dictate a processing requirement on that sensor's redundant

equivalents, or on the ground tracking data, or on its calibration

data, and so forth. As distinguished from the fixed summary
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reporting above, this QLP function exercises a set of causal

requirements (that is, given an unusual event A, accomplish

activity B). For this part of the QLP, only those unusual events

that require immediate action should be included.

3.1.1.4 Creation of Modified Quick Looks - The outputs from the

above three QLP activities will be, for every flight, to a

variable extent, less than complete. There will always be unfore-

seen events which will not be covered by the post-flight

processing specification. Nevertheless, the post-flight data

processing specification must direct at least the mechanics for

expediting action on such events. (The specification cannot,

of course, dictate the particulars of action against unforeseen

events.) For the purposes of this document, we assume the

existence of such a module as the fourth requirement on the QLP.

The software requirements section that follows contains little

in the way of particulars, which are left as an exercise for the

specification.

Note that there will be a learning curve applied to the

QLP: action taken in the modified quick-look area on any flight

should be covered as a specification revision for unusual event

analyses on the next flight.

3.1.2 Software Requirements

The QLP routines required to accomplish the functional

requirements presented in Section 3.1.1 are introduced in this

subsection.
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In Figure 3-2, an overview of the QLP shows it to be

composed of six routines. For our purposes, herein, "routine"

is not restricted to mean one distinct physical program. In

fact, in most instances it is more than one. Although the function

of any routine might be fixed, there is often a requirement to

develop a number of programs to accomplish that function, either

because the software maintenance requires a modular construction

(because of ever-changing requirements), or because the physical

characteristics of the various inputs (e.g., tape, disc, blocking,

format) dictate several mechanical versions.

Central to the QLP is the navigation data master file

(see Figure 3-2). To create that file, two routines are

required: the Duplicate Flight Recordings (DFR), and the Purge,

Format, and Catalog Routine (PFCR). The DFR simply creates a

version of the flight test data that can be dedicated to naviga-

tion analysis alone. This assumed that navigation and non-naviga-

tion data will be found on the same flight recordings. It also

assumes that the tape duplications are not accomplished by other

agencies. The second routine, the PFCR, is that multi-purpose

activity (probably consisting of many programs) that standardizes,

formats, catalogs, sorts, and tabulates the flight data.

From the master file, four routines are required to create

QLP outputs. The Duplicate Navigation Data (DND) activity acts as

the central data distributor. Analysts of flight data will be
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given data dedicated to their use alone. Therefore, they should

be presented duplicates of the master file copy. The Create

Flight Navigation Logs activity creates a set of summary reports,

in detail sufficient for first-look analysis. The Event Analysis

Routine (EAR) and Modified Quick-Look Routine (MQLR) create

special analyses and reports for unusual events; the EAR for events

covered by the specification, and .the MQLR for those not covered

by the specification.

In the following paragraphs, the software requirements for

each of these six routines are covered.

3.1.2.1 Duplicate Flight Recordings (DFR) - This activity may

or may not exist within the QLP, depending upon the inter-

relationship between the navigation post processing and non-navi-

gation post processing activities. Assuming that navigation and

non-navigation data will exist on one or more of the flight

recordings, there will be a requirement for duplicating those

recordings (or partitioning them, which would probably be a

solution technically less practical than duplication) so as to

have a dedicated version of flight data for navigation post-

processing needs. A high level of planning might judiciously

place that duplication function elsewhere. Until that is specified,

we herein assume that the function belongs to the QLP. The soft-

ware requirement is to have the capability to create "exact"
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duplicates of the flight recordings. For some, there may be a

temptation to accomplish additional processing 
during this

duplication process. This should not be done. Experience in

most data processing activities shows that an 
original version

of data should always be retained, because after 
data is

processed, it is difficult to retain a picture 
of which portion

of the processed output is raw and which has been 
altered.

With an original on file, one can always recover 
that distinction

when necessary. Nevertheless, any duplication process is

difficult to accomplish exactly; all duplicating processes have

their own noise. In any event, care should be taken to

accomplish the duplication as nearly as possible.

3.1.2.2 Purge, Format, and Catalog Routine (PFCR) - This

routine constitutes the most involved set of 
programs within the

QLP, due to the large number of functions 
to be accomplished and

to the lack of structural relationships among 
the functions. The

varied characteristics of the inputs necessitate 
a "shopping list"

of standardizing and cataloging processes to 
enable the inter-

changeability and cross-referencing of 
data necessary for the

reporting processes. The list of software processing require-

ments is as follows:

Format Standardization: The input data is of various mechanical

and logical input formats. The need to cross-reference data

from the various sources dictates a standardization 
of format for
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the master file. This creates a range of process requirements

including:

. Data Storage Medium Standardization - The input data

probably will be physically contained in several

different machine-readable forms. The PFCR should

translate the data to a standard form, probably tape

or disc, as dictated by the available processing

equipment.

. Data Packaging - The master file is made up of n

packages of data, with the word "package" used

here to mean a large collection of data of a

particular type (e.g., a stream of accelerometer

outputs). The packaging can be accomplished logically,

or physically; the choice would be dictated by

tradeoffs directed toward efficient retrieval practices.

. Data Blocking - It is assumed that the processing equip-

ment and practices dictate a standard quantum (i.e.,

"block") of data. A package would be partitioned into

n such blocks within the PFCR.

. Data Logical Record Layout - All data should be trans-

formed to a common "record" layout, such that a block of

data equals n records. The specifics of record layout

would be dictated by efficient retrieval.
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. Data Addressing - For a tape-oriented system, data

addressing is a trivial problem. For a disc-oriented

system, addressing can be used for efficient retrieval.

However, addressing logic development can be carried

to extremes. The amount of versatility required for

accessing through sophisticated addressing techniques

must be dictated by the output requirements. Care

should be taken not to exceed those requirements.

Data Labeling - Data groups should be properly labeled;

that is, all packages, all blocks, and in selected

cases, some records.

Data Synchronization and Calibration: It is assumed that the

input data will be of various units and will be referenced to

several different clocks. A need for conversion to common frames

of reference creates the following software requirements:

. Time Conversions to a Master - The different time

references for each recording should be brought to a

common reference if precision requirements so dictate.

This can be accomplished by event commonalities

between recordings, like mode switching, failures, etc.,

or by pre-flight clock calibrations.

3-12

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



. Calibration to Similar Units - The instrument data

strings will have different scaling and biases (and

perhaps other sensitivity variances, such as

temperature). The PFCR should convert instrumentation

data from various sources to the same units, to that

extent dictated by the analysis requirements.

. Calibration to Similar Dimensions - Data from the

different sources will be attempting identical state

measurements (e.g., velocity, position) but will be

of different dimensions, differing only by time

derivatives or integrals. The PFCR may be the practical

place to accomplish the integration or differentiation

to achieve a common dimension. The alternative process

location would be the analysis routines that require a

common dimension. A study of the analysis specifications

will dictate the choice.

. Line-up of Data Streams - It may be practical to line up

data streams that fall into a particular class, e.g.,

all gyros, all velocity measurers, etc. The PFCR would

be the practical place to accomplish this.

. Bit Stream Conversion - When data is in the form of bit

streams, it may be advantageous to convert those bit

streams to strings of digital bit counts.
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Data Filtering: Data streams will often contain undesirable

or unnecessary components. The PFCR should be assigned the task

of removing those anomalies. The following requirements are

placed on the software:

. Data Roundoff - Where large packages of data contain

either unnecessary or meaningless digits, there will

be an incentive to round-off to the most significant

data.

. Data Sample - When it is reasonably certain that the

data is of much finer grain than necessary, cost savings

can be achieved in analysis by sampling at less

frequent intervals, or by summarizing data within

intervals.

. Noise Abatement - The removal of non-navigation data

noise should be accomplished, but only where it is

reasonably certain that only non-navigation noise is

being purged.

Data Catalog: The PCFR would be the logical place to "inventory"

flight recordings. There are two requirements:

. Data Completeness - The existence of any loss of data

during the flight should be recorded and output from

the PFCR.

. Data Totals - The statistics of data packages in terms

of size, granularity, precision, and type should be

recorded and output.
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Data Security: Only one trivial software requirement is necessary

for security purposes, and that is to have more than one copy of

the PFCR output available, as a protection against fire or other

damages to the master.

3.1.2.3 Duplicate Navigation Data (DND) - The maintenance of a

central master file is the best method for sustaining the integrity

of the total navigation package. Given that the central file is

maintained as n distinct packages of data (perhaps n separate

types), the only software requirement for universal distribution

purposes is a simple duplication process (the DND). In order to

have an additional capability for copying any specified subset

of data imaginable, one would require the DND to have an extract

logic capability. After thorough consideration is given to the

organization of the master file, when creating the specification,

it will probably be found that the versatility of an additional

extract logic routine will not be required.

3.1.2.4 Create Flight Navigation Logs (CFNL) - Flight summary

reports will be required in order that the various navigation

design and analysis interests might expedite any required remedial

design activity for subsequent flights. This remedial activity

must be begun as quickly as possible. The Create Flight Naviga-

tion Logs (CFNL) routine (along with the EAR and MQLR) should
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provide to the analysts, within 24 hours of flight, an overview

of flight navigation performance.

The input to the CFNL is all of the data streams within

the master file; the output is a set of summary navigation reports

presenting various perspectives of thos data streams. To accomplish

this output, the following are software requirements;

Navigation Event Catalog: The flight navigation scenario is given

by the "navigation state" versus time or versus flight events.

The "navigation state" is the set of measured and computed para-

meters that best characterizes the navigation system. At the

minimum, it will be all instrument recordings (which have been

formatted, calibrated, and synchronized) and the navigation

velocity (V)/position (R) state vector. In addition, it will

include a characteristic set of intermediate navigation computa-

tions, and any computed guidance velocity/position state vectors,

(i.e., required velocity/position).

The assumption at this time is that any specific group of

analysts will be interested only in a selected subset of the

navigation state, which always includes the velocity/position state.

Also each group would have its own time frame-of-interest.

Therefore, the software requirement of the CNFL is to create the

navigation state vs. time and/or vs. flight events stream, and to
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partition that package of data according to the type of reader;

where at least one of the reports would be a summary of the

whole navigation state vs. time and/or vs. event.

The events that will dictate navigation state measure-

ments are:

. all mode switches,

. all failures,

. all Redundancy/Management switches,

. any unexpected event, and

. a specified set of time intervals.

For all types of events there need not be a complete navigation

state measurement. For example, a Redundancy Management switch

might require the reporting of only the instruments involved.

Data Statistical Calculations: The CFNL should also be required

to characterize quantitatively each component of the navigation

state. A minimum set of calculations for such a characterization

includes:

. Specification Check - Each critical data stream

is compared with its specification, and deviations

are reported.

. Parameters Statistics - The meaningful statistics of

any parameter are the statistics of the difference

between that parameter and a set of standard references,

including
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. spec limits

. expected values

" another parameter that measures the same
dimension

. null

The CFNL should have the capability for creating

the distribution of any of these relative values.

. Recording Data Statistics - from PFCR

. Noise Statistics - any clearly identified noise

should be reported.

The statistical calculations will include, additionally,

a set of specialized data statistics as dictated by analysis

requirements, and as outlined in the post-flight data processing

specification.

3.1.2.5 Event Analysis Routine (EAR) - Certain analyses will be

required only when triggered by unusual events. For example,

when a particular data stream is suspect, like an accelerometer

output, this would dictate the comparison of that stream with

other measurers of the same parameter, like the redundant

equivalents of the suspect instrument. Because of the complexity

of the shuttle instrument package, the number of such causal

analyses can be quite large. The number of types of software

analyses will, however, be somewhat smaller. The post-flight
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navigation data preprocessing specification will dictate the

specific set of such software analysis capabilities. Following

is the set of requirements that should be expected in that

specification:

Data Plotting: When an unusual event is found in any data string,

the problem is to find the cause or reasons for that event. The

obvious recourse is to "plot" the .string in which the event

occurred against other strings that might give insight. (To

"plot", in this case, is to create data pairs that can be

presented in graph form or in any manner.) The software require-

ment is to be able to plot any navigation state parameter against

any other state parameter. Examples of the reference parameters

are: the velocity/position state; the redundant-equivalent

string of data; and the ground-track equivalent string.

Plotting can.also include a finer grain of the analysis

triggering parameter against time or against events.

Data Analysis: Any data string or the map of two or more data

strings can be characterized by certain statistical parameters.

Examples constituting the minimum software requirement for 
the EAR

are:

. correlation coefficients,

. means,

. standard deviations, and

. curve fits (e.g., least square).
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Complementary Data Reporting: There exists within the master

file a complete set of navigation data for all flights. To aid

in the diagnosis of unusual events, that file can be used to

create a "Diagnosis Book" for each class of unusual events.

Included in that book would be such things as:

. calibration data from this flight and all previous
flights

. instrument repair history,

. failure history,

. configuration history,

and any other data deemed as a necessary input to diagnosis.

3.1.2.6 Modified Quick-Look Routine (MQLR) - The Modified Quick-

Look Routine (MQLR) anticipates that thorough foresight at the

time of specification writing is not possible. There will always

be a need for quick analyses that are not covered in the preceding

QLP routines. What the specification can cover, however, is the

scope of MQLR activity, including, for example, the types.of

analyses that will be accomplished; level of manpower/machine

power available; etc. It is expected that the MQLR software

capabilities will be variations on existing capabilities like

the EAR routines. It is also expected that MQLR requests will

expedite revision action against the post-flight navigation data

processing specification.
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3.1.3 QLP Summary

The quick-look processor, as described in the previous

sections, enables a rapid and orderly distribution of information

concerning flight navigation performance. Significant cost

savings will be the result of implementing the QLP as described

because of: the minimization of waiting on the part of design

and analysis activities; the elimination of duplicate efforts;

and the reduction of post-flight testing to include only that

which is absolutely essential.
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3.2 Post-Flight Navigation Processor (PFNP)

The post-flight navigation processor provides the capability

of executing the redundancy management and navigation functions

subsequent to flight. A general description of this processor and

its uses is contained in the following paragraphs.

3.2.1 Functional Requirements

Three types of inputs are needed for the post-flight

navigation processor. These include: preset navigation parameters

and constants, time history of.shuttle navigation sensor data

recorded throughout the flight, and ground tracking trajectory

data. Specifics as to the data types are given in Section 2.3.

The input data is processed by a post-flight version of

the operational redundancy management (RM) and navigation functions.

The baseline version of the PFNP should contain an exact duplica-

tion of the on-board RM and navigation software (filters, sensor

selection logic, navigation mechanization, etc.). The baseline

PFNP should be able to reproduce the navigation portion of the

actual flight using the recorded data.

The output of the PFNP is a time history of the position,

velocity, and attitude of the shuttle and filter-determined

variances of the errors in these quantities. In addition, measure-

ment statistics for each sensor can be compiled. The trajectory

output of the PFNP is compared with the trajectory prepared by
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ground tracking equipment to achieve a measure of the performance

of the operational software.

Naturally, the post-flight reproduction of the actual

test by the baseline processor does not in itself seem too important.

If the operational software functions properly, such data would

be available from the test. The real value of the PFNP lies in

the fact that many alternatives can be exercised using real data

collected in an operational environment without repeating the

actual test. Hence, the major uses for the PFNP are:

Navigation Algorithm Improvement Studies - Changes in the filters

or other navigation algorithms can be made, and the impact of these

changes can be tested in the operational environment. Comparison

of the altered PFNP output with the trajectory determined by

ground tracking equipment can be used as a performance index.

Redundancy Management Testing - It is not expected that the ALT

will exercise all aspects of the redundancy management function.

By altering the test data, these capabilities can be tested in an

operational environment. Also, alternative RM algorithms can be

tested. This can include changes to the failure detection and

identification (FDI) algorithms.

Subsystem and Software Error Detection - Post-flight processing

of the form described in this section is useful for the identifica-

tion of subsystem and software errors. Three ways in which such

errors may be identified are: by observing systematic deviation

of PFNP and ground tracking trajectory solutions, by using

3-23

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840



expanded state filters, and by comparing sensor measurements

not used in the PFNP solution with this solution. The latter

is performed by executing the PFNP using all but one set of

sensor data. This use of a post-flight processor has been shown

to be both practical and successful with the CIRIS system*.

The advantages of developing a post-flight processor for

the shuttle ALT test are obvious from its potential uses as

described above. The disadvantage might be the development and

operational cost associated with this technique. However, this

cost is minimal with respect to the cost of the test program

or even one test.

Compared to pure simulation, post-flight processing as

described in this section has the advantage of using operationally-

obtained real data. Modification of a simulator to perform

this function is often not possible since the post-flight

processor timing must be governed by the recorded data timing

instead of by the simulator software. Some of these differences

will become more apparent in the software description section.

3.2.2 Software Requirements

The suggested design of the shuttle post-flight navigation

processor consists of three separately-operable software modules.

These modules are required to perform the following functions:

,Radio transponder survey errors, doppler radar anomalous performance,
and INS mechanization equation errors were all found using a CIRIS

post-flight processor.
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a. flight data tape editor (FDTE)

b. parameter file tape generator (PFTG)

c. navigation function processor (NFP)

(1) NFP control

(2) job control card processing

(3) redundancy management and navigation processing

(4) ground tracking comparison module

The system configuration is shown in Figure 3-3. The following

subparagraphs specify the required operational functions. It

should be noted that much of the text that follows is a function

of the method of generating the formatted navigation data. In

general, multiple tape input will be considered.
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Figure 3-3 Post-Flight Navigation Processor System Configuration
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3.2.2.1 Flight Data Tape Editor (FDTE) - This preprocessor

module processes the formatted navigation data tapes and creates

a new edited flight data tape. This consists of processing the

flight data to a state of completeness by simulating failed

sensors and deleting data anomalies. The flight data tape editor

module has been designed as a separate program for several reasons.

In many situations, many different PFNP runs can be made while

the data editing needs to be done only once. Also, in general,

the same edited data tape can be used for both the PFNP and error

isolation processor (see Section 3.3). In addition, the flight

data tape editor provides a standard interface for use in

generating test tapes used in program checkout.

3.2.2.1.1 Source and Type of Inputs - The inputs to the flight

data tape editor are a subset of the formatted navigation data

tapes described in Section 3.1.3. Those tapes will have been

specifically designed for the purposes of the post-test data

processor immediately following the flight. The master of these

tapes will be kept in a central file, eliminating a need for

rigorous control during post-flight navigation processing.

3.2.2.1.2 Destination and Type of Outputs - The output of the

FDTE should consist of error messages and an edited flight data

tape or tapes (EFDT). Output data is generated once per execution.
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Listable output of messages and processed data should be included

as an option.

3.2.2.1.3 Information Processing - A simple conceptual flow

diagram of the flight data tape editor is presented in Figure 3-4.

The job control functions cards are the first processed to

produce a tape identifier. Error messages for the function cards

should be included in this processing. Processing is terminated

if function card errors are found. Next, the navigation data

is read a record at a time. Errors in the records are identified

and listable output messages provided. Such errors might include

parity errors, sync errors, record length errors, and word or

bit pattern errors. If no errors are found, the record is

processed. The edited data is then output to a tape and listed,

if desired. The next record is then read. At the last tape

record, a check for multiple tapes is made, and, if more than one

tape is available, a new tape unit is assigned, and processing

continues.
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Figure 3-4 Conceptual Flow Diagram for Flight Data Tape Editor
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3.2.2.2 Parameter File Tape Generator - This preprocessor

module creates the fixed data base for the post-flight navigation

processor. The data base contains navigation parameter and

constants as specified in Section 2.3. The sources of data may

be punched cards, paper tape, etc. The parameter file tape

generator (PFTG) has been designed as a separate program since

a common tape input provides a more convenient method of data

base input to the PFNP. As will be seen in Section 3.2.2.3, the

inclusion of data base alteration options in the navigation

function processor (NFP) allows simple data base changes without

the requirement for re-execution of the PFTG.

3.2.2.2.1 Source and Type of Inputs - The input to the parameter

file tape generator (PFTG) is of the following three record types:

job control functions

data

job termination

The job control functions perform housekeeping tasks and

ultimately result in a tape identity record. This identifier

should contain such items as tape generation identifier (PFTG),

tape identifier, date, originator identification, etc.

The data records provide for the numeric values that make

up the items in the data base (see Table 2-1). The record design

should provide the name of the value and the value itself. This
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syntax allows both ease of data input and verification. No data

record order is required since the envisioned design contains a

sort routine as part of the baseline. This capability allows

easy data input and reduces possible errors.

The job termination records cause the PFTG processor to

stop reading records and to generate the parameter file tape

(PFT).

3.2.2.2.2 Destination and Type of Output - The outputs from the

PFTG module consist of a listing of the contents of the PFT, the

tape itself, possible errors in the job control functions, data

variable name errors, and data values which are missing.

3.2.2.2.3 Information Processing - A conceptual flow diagram of

the parameter file tape generator is shown in Figure 3-5. The

job function records are processed in the same manner as in

Section 3.2.2.1.3 to produce a tape identifier label. Data records

are processed by comparing the inputted variable identifier to

a pre-stored table. If a match is found, the inputted value is

stored in the appropriate location. During record processing, a

count is kept of errors encountered in reading the records.

Presence of any errors will inhibit the generation of the parameter

file tape; an error summary would be sent to the listable output

device, and the job would terminate.

3-32

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



START 105

PFTG

ZERO OUT DATA YES

VARIABLE 
RECORD

LOCATIONS IELD

NO

101 FUNCTIO YES
RECORD

FIEL

NO
READ JOB

CONTROL END YES

RECORD RECORD

FIELD

BLANK A YES

CARD OR 101 103

FIELD VL

YES
PROPER 105
RECORD

-IELD

103 105

Figure 3-5 ParameteNAE FROFile STORE

3-33

TABLE, AND STORE

INPUTTED VALUE

OUTPUT

ERROR 101

MESSAGE

Figure 3-5 Parameter File Tape Generator

3-33



115

IDENTIFY FIELD AND

STORE INPUT IN-

FORMATION IN TAPE 130

LABEL BUFFER

WRITE TOTAL
101 ERROR

MESSAGE

120 135

YES
ORS IN YES

RECORD PRO- 130

ESSIN

WRITE PARA-

METER FILE
AND RE-
WIND

LIST

PARAMETER
FILE

OIGI QPAGT IS
135

STOP

Figure 3-5 (Continued)

3-34



If no errors are encountered, a label is written on the

tape, followed by the prestored table of variable identifiers

and the table of their corresponding values as modified by the

data input cards, and the tape is rewound. The contents of the

parameter file are then listed for record-keeping purposes, and

the job terminates.

3.2.2.3 Navigation Function Processor (NFP) - This main module

of the PFNP recreates the execution of the onboard redundancy

management and navigation software by operating on the flight

recorded data. The parameter base is made available through a

parameter file tape (PFT); the contents of this parameter file are

modifiable under user control. Processing is directed through

user-generated job control cards. In order to offer maximum use-

fulness, the NFP provides a large degree of flexibility through

user options like selection of processing start and stop times,

selection of sensor data to be incorporated by the filter, frequency

of sensor data processing, etc.

3.2.2.3.1 Source and Type of Inputs - Inputs to the NFP consist

of an edited flight data tape, a parameter file tape, and a job

control deck. The EFDT is generated by the RFDTE pre-processor

(see Section 3.2.2.1). The PFT is generated by the PFTG pre-

processor (see Section 3.2.2.2). The job control deck can contain

cards of the following types:

. function

. data alteration
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. user option generation

. listable output control

. termination

The function card performs administrative duties, leading

to identification labels to be placed in any tapes and/or listable

output to be generated during the run.

The data alteration cards allow modification of the data

base values stored in the parameter file without requiring its

regeneration by the PFTG program.

The user option generation card implements user processing

directions such as sensor data to be processed, selection output

tape generation, etc.

The listable output control card is used to specify the

frequency and type of data to be listed during the run.

The termination card indicates the end of the job control

deck.

3.2.2.3.2 Source and Type of Outputs - NFP outputs consist of

data tapes for further processing or for automatic comparison

with outside references, and listable output for quick-look analysis.

All output tapes are labeled with identifiers provided

through the job control functions, in order to facilitate correla-

tion of tape data to the conditions of the run in which it was

generated. Examples of candidate data for tape output include the
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filter estimate of shuttle position and velocity for comparison

to cinetheodolite and/or C-band radar reference trajectories, and

to the onboard computed estimates for verification of compatibility

of the operational and post-flight software and evaluation of the

effect of limited computer word precision on the performance of

the onboard estimator. The Kalman filter state vector and

covariance matrix allow insight into the filter performance by

observation of the developed cross-correlations between state

elements and by comparison of the state variances to the actual

level of the filter estimation error as generated from ground

tracking reference trajectories. An important index of filter

performance is the degree of consistency between the measurement

residuals (difference between measured and estimated value of the

measurement) and the filter-computed la error in the estimated

measurements. Similarly, means and standard deviations can be

computed from measurement residuals to evaluate the approximation

of the actual residuals to the zero mean random residual measure-

ment error assumed by the filter and the appropriateness of the

selected la error level for the measurement. These processed

residuals give an indication of the adequacy of the error model

being used by the filter.

Listable output would consist of reproduction of the job

control card deck, listing of the operating data base, error messages

and diagnostics, and a subset of the tape output data to allow
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quick-look analysis of the NFP performance before embarking on

further data reduction.

3.2.2.3.3 Information Processing - A simplified flow diagram

for the navigation function processor is presented in Figure 3-6.

Following an initialization step, in which administrative functions

like I/O unit assignments, etc., are accomplished, the parameter

file tape is read. The program then reads the job control cards,

identifying their types: function cards are processed to set up

label information for output; data cards are read to modify

contents of the parameter file data base; generate cards are read

to set flags which implement user options to control processing;

listable output cards are read to determine run pertinent require-

ments. Reading of a termination card completes processing of the

job control deck. If errors have been encountered in processing

the cards, the run terminates following printout of an error

summary.
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If so selected, an updated PFT can be generated using

the data base modifications input through data alteration cards.

The data base is then listed for record-keeping. Parameter units

are then converted to a consistent set (o/hr to rads/sec, for

example). The program then searches the EFDT for the selected

processing start time by reading records until the record 
time

exceeds the desired start time. The Kalman filter state vector

and covariance matrix are then initialized and output to tape

and the listable output device.

If an end-of-file has not been reached on the EFDT, and

the desired stop time has not been exceeded, the program settles

into its main loop. The next EFDT record is read. If a data

gap exceeding the filter time step constraint is encountered, an

interpolated data set is generated for the filter's state and

covariance matrix update. The data is then processed by a replica

of the on board-redundancy manaaement and naviqation software.

Output is then made to tape and printer, and the program recycles

through its main loop.

On encountering an end-of-file on the EFDT, or on exceeding

the desired processing stop time, a final output is made, and the

program terminates.
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3.2.3 PFNP Summary

The concept and formulation of the post-flight navigation

processor described in the previous sections provide not only a

post-flight navigation data reconstruction capability, but also a

means of altering and testing with flight data the redundancy

management and navigation functions. These capabilities offer

a significant means of maximizing test data returns while

minimizing test operational costs and risk. If formulated using

the guidelines of Section 2, modification and checkout of the

operational software based on post-test analysis can also be

simplified.

3.3 Error Isolation Processor (EIP)

The error isolation processor (EIP) serves a twofold purpose:

on the one hand, by estimating the operating error sources, it

provides a capability to evaluate the performance of the redundancy

management logic; on the other hand, it provides the capability

of identifying those error source, or groups of error sources,

whose contribution to the system error is critical to the

performance of the shuttle navigation function. A general

description of this processor and its applications is given below.

3.3.1 Functional Requirements

Two input data types are required for the error isolation

processor: modeling parameters, and time history of shuttle

navigation sensor data recorded throughout the flight. In addition,

3-43

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



ground tracking trajectory data can be used to verify the

performance of the processor, or as an external reference source

in the estimation process.

The input data is processed by a high-order Kalman filter,

modeling all of the significant navigation sensor error sources.

In order to make optimal use of all the available information, the

filter model could include the significant error sources of each

of the three shuttle IMUs. Given a conservative estimate of at

least 40 significant error sources for each IMU, the required

state dimension, with its related computer storage and computa-

tion time requirements, rapidly becomes unmanageable. Furthermore,

the errors from the different IMUs can be expected to be highly

correlated, given that they are driven by the same environment

(gravity errors) and that they maintain a fixed relative orienta-

tion. Therefore, their contribution to improved estimation of

each other's error sources will be small. It therefore seems

more cost-effective to optimally blend each IMU's outputs with

the external reference data one at a time. The same processor

can still be used by providing for user selection of the IMU data

to be processed. The state dimension is reduced to a manageable

level (~50 states) with corresponding savings in program run time.

Note, however, that a source of information has been neglected

(i.e., the other two IMUs) and that, therefore, the processor

performance is somewhat degraded versus the theoretically optimal

achievable estimation accuracy.
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The output of the error isolation processor is a time

history of the estimates of vehicle position velocity and

attitude and of the modeled nav sensor error sources, and the

filter-computed covariance of the estimation errors. The trajectory

output can then be compared to the ground tracking equipment

trajectory to provide confidence in the filter performance.

The desired output from the processor are the estimates

of the operating navigation sensor error sources. Two major uses

for this data are presented below:

a. Redundancy Management Software Evaluation - Determination

of the IMU error sources provides the basis for RM evaluation by

establishing whether a failure had indeed occurred when the soft-

ware so indicated, or conversely, whether the software failed to

react in the face of an actual component failure. On this basis,

the RM design can be validated or appropriate modifications

justified.

b. Identification of Error Sources Critical to Navigation

Performance - An error source, or a linear combination of error

sources, is observable to the extent that is contributes to the

measured error. Thus, in the event that the navigation filter

estimates are not consistent with external measurements, resulting

in degraded filter performance, the error isolation processor

provides a ready tool for the identification of error sources,

modeling errors, etc., causing the poor performance. With its
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high-order state, and therefore greater error dissemination

capability, it allows accurate determination of the error source

characteristics and permits clear-cut testing of competing

hypothesis.

This processor also offers the possibility of using

smoothing techniques to achieve improved estimation accuracy.

Smoothing (in the sense of Fracier) represents the combination

at any point in time of optimal filters processing the data forward

and backward in time. It thus provides, at any point, the optimal

estimate derived from all the available data, with significant

improvement of the estimation of time-varying errors (for constant

errors, the final forward filter estimate represents the result

of processing all the available data, and is, .therefore, the optimal

estimate). The benefits to be provided by smoothing depend then

on the extent to which the shuttle nav sensor error sources are

expected to be time-varying. In general, most IMU error sources

are considered to be constants, and smoothing would not then provide

any improved estimation accuracy.

3.3.2 Software Requirements

The suggested design of the shuttle error isolation processor

consists of three separately operable software modules:

a. flight data tape editor (FDTE),

b. parameter file tape generator (PFTG),

c. error analysis processor (EAP).
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The first two modules follow the same design approach

as those described for the PFNP; in fact, a generalized version

of these modules could be developed to serve as interfaces for

both main processor (PFNP and EIP). Thus, descriptions of the

FDTE and PFTG will not be repeated here.

3.3.2.1 Error Analysis Processor - The EAP attempts to estimate

the significant error sources of each of the shuttle nav sensors.

The EAP follows the same design philosophy as the NFP. It reads

the nav sensor data off an edited flight data tape. The EAP

parameter base is made available through a parameter file tape;

the contents of the file can be modified by the EAP under user

control. EAP processing is directed through user-selected job

control cards, controlling such options as processing start and

stop time, IMU-to-be-processed selection, reference system

selection, etc.

3.3.2.1.1 Source and Type of Inputs - Inputs to the EAP consist

of the edited flight data tape (EFDT), the parameter file tape

(PFT) and a job control deck. The EFDT is generated by the flight

data tape editor pre-processor. The PFT is generated by the

parameter file tape generator pre-processor. The job control

deck serves to specify user options and contains the following

types of cards:
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. function cards, specifying tape label and listable
output page header information

. data alteration cards, specifying modifications to
the program data base contained in the parameter
file

. generation cards, specifying user-selected processing
options

. listable output control cards, specifying the type and
frequency of program listable output

. termination card, indicating end of the job control
deck

3.3.2.1.2 Source and Type of Outputs - EAP outputs consist of

tapes for further processing and listable output for visual

analysis.

All tapes are labeled with identifiers provided through

the job control function cards. Tape output data consists of the

state estimates and covariance matrix at each filter update.

Listable output consists of a subset of the tape output

data, provided at lower frequency. Such data might consist of

position and velocity estimates and their computed variances, plus

measurement residuals, in order to confirm filter convergence.

In addition, error messages and diagnostics are provided as required.

3.3.2.1.3 Error Analysis Processing - A simplified flow diagram

for the error analysis processor (EAP) is presented in Figure 3-7.

The parameter file tape (PFT) is first read to set up the initial

program data base. The processing of job control cards, which
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generate header labels, set processing control flags and modify

values in the data base, then proceeds similarly as for the NFP

(see Section 3.2.2). If errors have been encountered in

processing the job control card deck, the program terminates.

If a new PFT is desired, the contents of the parameter

file, as modified by the input data alteration control cards, are

output to the specified tape. The data base parameters are then

listed, following which they are converted from their colloquial

type units used for I/O, to a consistent internal processing set

(o/hr to rads/sec, min to rads, g's to ft/sec , etc.).

The EFDT is then read until the desired processing start

time is found. The filter state and covariance matrix are then

initialized. Also to be initialized is a set of INS data to be

used as the basis for interpolating across any gaps which may be

present in the recorded data.

The program then enters its main loop. If more data is

available in the EFDT, the next record is read. If the selected

processing stop time has been reached, the program terminates.

The filter is to compute the state transition matrix through

the approximation = I + FAt, where F is the system dynamics

matrix, and At is the filter time step. In order to validly

neglect the higher-order terms in the approximation, the filter

time step must be constrained. Thus, if a data gap is encountered

which exceeds the filter time step limit, a set of "pseudo-INS"
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data must be generated by interpolation for use in the filter

time transition. This interpolation would be of higher accuracy

than the linear extrapolation used for the state transition

matrix computation. The data to be used in this interpolation

routine is kept current by updating it each time a record is

read.

Some elements of the state transition matrix are functions

of integrals of specific force or integrals of products of

specific forces (i.e., elements relating gyro g2 sensitive drifts

to platform tilts). Given the rapidly varying character of the

specific force vector for the shuttle, the allowable filter time

step would be severely constrained. In order to avoid this,

the specific force-dependent terms are accumulated at the rate

at which the data becomes available, thus still constituting a

faithful representation of the shuttle IMU specific force history

when they are used at the more leisurely filter update rate. In

this fashion, processing time is saved considerably.

Next, if a measurement is available, or if the filter

time step constraint is about to be violated, the filter state

and covariance matrix are extrapolated to the new filter time.

The order in which the filter is to process the measurement

sensor data must be established. One such ordering, organized

roughly from the least to the most accurate measurement type, is

presented in the flow chart: barometric altimeter altitude, radar
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altimeter altitude, TACAN VOR meas, TACAN range meas, MLS eleva-

tion, MLS azimuth and MLS range. Such an ordering tends to

process last the three measurements which are most sensitive to

non-linear effects, thus using for them the best available state

estimates. Actual processing of the measurements is, of course,

dependent on whether the sensor data is available at the selected

new filter time.

For each sensor, a measurement correction and calibration

step is first executed. This might include compensating the

barometric altitude for non-standard temperature effects if

temperature readings are available, correcting the radar altimeter,

TACAN and MLS measurements for the fact that the sensor antenna

is not co-located with the IMU, compensating elevation angle and

range measurements for atmospheric refraction effects, etc.

Following this, the appropriate measurement residual, measurement

gradient vector and variance of the assumed measurement random

error is computed.

In order to avoid matrix inversions, the sensor data are

treated as sequential scalar measurements. The following processing

is common then to all measurements and is called for each measure-

ment. The filter estimated measurement variance (hT P h + r,

where h = measurement gradient vector, P = covariance matrix, and

r = variance of measurement random error) is computed and used to

apply a data-reasonableness test to the measurement residual. If
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the square of the measurement residual exceeds some multiple

of the estimated measurement variance, the measurement is neglected.

Such a level might be 16 variances (or 4a) which contains over

99% of the possible samples for a gaussian distributed random

error. If the filter has been properly formulated, the covariance

matrix should contain an actual representation of the la level of

the error in the estimates, and the test should therefore be able

to edit out bad measurements.

If the data validity test is passed, the measurement is

used to update the filter state and covariance matrix. Depending

on the measurement that has just been processed, and consistent

with the pre-established processing order, the next measurement

is selected, and the loop repeats until all measurements have been

exhausted. Appropriate printouts and outputs to tape are made,

and the program loops back and reads a new EFDT record.

When all EFDT records have been exhausted, or when the

desired processing stop time is reached, the program terminates.

3.3.3 EIP Summary

The concept and formulation of the error isolation processor

described in the previous sections provide the capability of

determining magnitudes of particular navigation error sources for

any one test. This processor is considered to be the least critical:

it provides data that is valuable but not mandatory if the test
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goal is only to determine overall navigation system performance.

If additional detail is desired on subsystem performance, the

EIP provides a method of obtaining this data.
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4. POST PROCESSING DEVELOPMENT PLAN

The development of the navigation data post processor should

be divided into three phases:

a. Specification Development Phase - where the preliminary

design of the processor will be achieved;

b. Implementation Phase - where the design will be completed,

and the software built and verified; and

c. Test Phase - where integration testing will be achieved

using data from the orbiter ground checkout facility.

The rationale behind this plan structure and its relationship to

other shuttle activity is presented below.

Figure 4-1 shows the three phases and their relationships

to the standard NASA development scenario and to the significant

shuttle program milestones. The standard scenario is presented

in the sections of the Figure 4-1 labelled "Development Activity

and Documents" and "Review Milestones". The specification develop-

ment phase requires an input of the navigation system requirements,

design, and test requirements (as shown in the diagram). With

those inputs, it will be possible to achieve preliminary design

review (PDR) of the post processor within six months. The design
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requirements review (DRR) would be achieved between the second

and third month, with the program plan developed in the first

month. (The writing of the program plan could be taken as a

separate project phase, if so desired.)

The major reason for having a specification development

phase separate from an implementation phase is the difficulty

in being definitive in the scheduling and the costing of the

software package implementation without a prior analysis of the

navigation specifications. Hence, the program plan will be

updated during the specification writing phase for the purposes

of the implementation phase.

The reason for a separate test phase (as opposed to including

it in the implmentation phase) is the different phase logistics.

Integration testing should be accomplished at the operational

test facility using data from the actual vehicle ground checkout;

whereas the other activities can be achieved at any location.

A preliminary estimate of the level of effort for the develop-

ment of various combinations of post-test processing tools is

presented in Table 4-1. It should be noted that the level of

effort required for the development of more than one form of post

processor is not the sum of the man-months required for the

independent development of individual processors. This occurs

due to the similarity of certain modules in the various post

processors.
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Table 4-1

Level of Effort (Man-Months} for Combinations of Processor Development

SPECIFICATION IMPLEMENTATION TEST

PROCESSOR (S) DEVELOPMENT PHASE PHASE TOTAL

QLP 6 32 4 42

PFNP 6 32 4 42

EIP 6 32 4 42

QLP & PFNP 11 56 6 73

QLP, PFNP

& EIP 16 80 6 102

There are two shuttle program forcing elements that act

on the post processing development plan (see the bottom section

of Figure 4-1). The primary forcing element is the orbiter

vehicle ground checkout. At a point in time when navigation

equipment has been installed, the post processor should be ready

to demonstrate its capability. According to the schedule in

Figure 4-1, 14 months prior to that installation should be the

post processing project initiation date. But project initiation

requires input of a set of navigation specifications -- the second

forcing element. Orbiter ground checkout begins in March, 1976,

with the first captive flight scheduled for February, 1977. The

navigation system should, therefore, be installed by the summer
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(say, July) of 1976. This means that May, 1975, would be an

appropriate starting date for the post processing development

activity, with PDR occurring around November, 1975.
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5. SUMMARY AND CONCLUSIONS

The development of navigation data post-flight processors

can be, if properly planned and implemented, a significant cost-

saving device for the overall shuttle program. Using flight

data from the initial test flights, it is possible to accomplish

significant design tradeoff analyses of other flights through

inexpensive simulation. Those simulations will have the added

advantage of using actual operational data. The cost savings of

simulation over actual flights are obtained, while the major

argument against simulation is answered through the use of actual

flight data.

To summarize, the post-flight processing project outlined

in this report achieves the following capabilities:

. Rapid reporting of flight performance

. Central control, synchronization, and standardization
of data

. Evaluation of alternative navigation schemes and modes

. Performance accuracy analysis

with the following cost and performance advantages to the overall

program:
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. Early identification of flight anomalies, hence a
rapid initiation of remedial design allowing for
tighter schedules between flights

. Optimization of flight navigation configuration

. minimum software requirements

. minimum calibration and alignment requirements

. minimum hardware requirements

. Checkout of software without complex flight tests

* Timely response to data requests from analysts,
designers, and managers

. Tight control and catalog of data inventory

. minimum post-flight processing activity

. no loss or damage of data

. Standard programming language for all analyses

. Common data base for all users

The anticipated development schedule for this project

(see Section 4) should be begun by May, 1975, in order to meet

the overall schedule objectives of the shuttle program.
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n-
mt= k mm X-- X +mF, +F2F

j-o 

n-1

myz=k2 mm , A _ mFl,+F2d;

j =0 I

These equations can be readily derived from the fundamental /13
equation of dynamics for a free material point written in vector
form

mW = F,

where W is the acceleration of the point; and F is the resultant
defined by the following sum:

F = f+ mI+ 7.

Here f is the resultant force of attraction of the celestial body;
mF 1 is the auxiliary mass force caused by the influence of the
noncentrality of the planetary force field. This force must be
taken into account for motion near the planet; and F2 are the
forces that do not have a potential function, for example, the
force of air drag, which is taken into account for motion in the
atmosphere.

After canceling out m, the equations become

n-I

x=k" 2Vmj xJ- x

y--k2 mj -+F,,+- F*
j =o i A m!%n--I

-k" m~ -- + F + 1_ . (1.1)

The system of differential equations((l.l) of sixth order is
themost general system of equations of motions of artificial
spacecraft, including artificial Earth satellites. For assigned
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initial conditions of motion (x0, Y0, z0), it must be integrated
by numerical methods. In a special, but very important case when
the point travels in the gravity field of only one planet (j)
and the perturbing forces F1 and (1/m)F2 are not taken into
account, the system of equations (1.1) can be integrated in the
final form.

Let us transfer the origin of coordinates to the center of
attraction, that is, let us jet x = yj = zj = 0 (we can neglect
the influence of the mass of the AES on planetary motion), then /14
equations (1.1) take on the form of equations of unperturbed
motion:

y+k 2mr (1.2)

z k2 m = 0,

where r = x2 y2 + z2 is the radius-vector of the point under
study relative to the center of attraction.

Let us multiply the first equation by y, and the second by x,
and let us subtract one from the other. Then,

d y -dxy .
xY - zx= - x-U Y 0-dt dt dt

By integrating this equation, we get

dV dxx-- Y -= CS. (1.3)dt' dt

In similar fashion, from the second and third equations, and from
the first and third equations, we get

y- d'z- y =C 1; (1.4)
dt dt

dx dz
z -- -= C 2di dt (1.5)

These three first integrals of system (1.2) are the integrals of
areas.
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If we multiply integrals (1.3)-(1.5) by z, x, and y, respec-
tively, and if we add the results, we get

xfC2y+Csz=O, (1.5')

that is, the motion of a material point acted on by -the central
force applied at 0 occurs in a plane passing through point 0.
This is physically clear since the side forces with respect to
theplane containing the, radius-vector r:of the material point
and its velocity vector F are absolute. The position of this
plane in space is entirely defined by the initial conditions of
motion, that is, by the initial coordinates of a point and by
the initial velocity of the coordinates with integrals (1.3)-(1.5).

By moving in the plane (1.5!), the material point preserves
its:;sectorial velocity constant. We can easily see this since /15
the left-hand sides of Eqs. (1.3)-(1.5) are the projections of

the vector r x r onto the coordinate axes. According to the
definition, the vector product of two vectors is equal in magni-
tude (or modulus) to the product of their moduli by the sine of
the angle between them, that is, equal to the area of the
parallelogram constructed on these vectors.

In our case, r is the radius-vector of the material point

and r is its velocity. The area of a parallelogram constructed
on these vectors is numerically equal to double the sector
velocity. This means that under the effect of the gravitational
force of one center (one planet), the material point will move
along a plane curve, preserving its sectoricl velocity constant
and, therefore, preserving its projections onto the coordinate
axes constant.

Let us denote the sectorial velocity, that is, the increment
in area A swept out by the radius-vector of a traveling point
per unit of time by dA/dt. Let us find the value of the constant
1/2 C, which it is equal to:

dA 1
-- C=

dt 2 (1.6)

2 V&o o-z 'O +(z 0 -XoZo)-(xoyo bO.O) 2

where C=VC+C C+ C2.

5



After integration, we get

A = - C (t -to),
2

that is, the area of sector A increases in proportion to time t
(to is the initial moment of time reference). Obviously, the
projection of the area of sector A onto any off "the coordinate
planes will vary according to the same linear law. The constants
Cl, C2, and C3 are the projections of the doubled sectorial
velocity C onto the coordinates planes Oyz, Oxz, and Ozy. If Cl,

C2, and C3 are known, then therefore not only the sectorial,
velocity 1/2 C is known, but also defined is thenooiientation of
the plane in which the point (of the AES) will move. The con-
stants Cl,.C 2 , and C03 are usually replaced by the more graphic
parameters C, i, and 0, of which: i is the inclination of the
orbital plane to the principal coordinate plane Oxy (if we con-
sider the equatorial coordinate system, then the inclinationOf
the orbital plane to the equatorial plane); and 0 is the angle in
the plane Oxy between the axis Os and the line of intersection ,f
the planes of the equator and the orbit (nodal line), where the
point at which the satellite travels from bottom upwards (as-
cending node) is selected for the reference of the angle on the
nodal line.

From the spherical triangles (see /16
n n Fig. 1.1) xnK and ynK (the are nK is

a equal to 900) we find

OICHC3 cos a= sin Qsin i;
Scos B= - cos Q sin i.

900  b
93kamo Therefore, the integrals of areas (1.3)-

X M(1.5) with new constants will be of the
form

Fig. 1.1. Scheme
of motion of AES yz -zy= C sin 2 sin i;
relative to se~',s
lected reference zx-xz=--CcosQsini;
system. xy -yx=Ccosi.

Key: a. Orbit;
b. Equator; c. AES The longitude 0 of the ascending node will

vary within the limits from 0 to 3600, and
the orbital inclination i will vary from
0 to 1800... If 0 < i < 900 satellite motion

will be rectilinear, that is, it will be executed in the same
direction in which the longitude increases; if 900 < i < 1800,
the motion will be retrograde.
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The system of equations (1.2) gives us yet
another integral -- the integral of energy. In

AT order to obtain this integral, let us multiply the
first equation by k, and the second by , and the
third by , and let us add the results, resulting
in the equation

Fig. 1.2. +yu+zz+ mi: zxx+yy+zz)=O.
For deri-
vation of
law of Integrating, we arrive at the following equality:
areas.

2 , x2 + y 2 + z 2

where H is the constant.

The expression in the parentheses is v2 -- the velocity
squared; therefore, in the final form the integral of energy
will be

v2 k2mJ H.

2 r

Along the orbit the sum of the kinetic and potential energies
of the AES as it moves in the central field remain constant. By
using the integrals of area and energy, we can solve the problem
of the motion of the material point acted on by the central force
[58].

Let us write out the law of areas (1.6) in the coordinates
r and q (angle of rotation of the radius-vector r in the orbital
plane):

r2c= C. r2 C. (1.6')

The same result for these orbits is obtained directly from Fig. /17
1.2, namely

r(r +ar) C=2A.

As At + 0, this expression is transformed into (1.6!).
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Assuming v2 =2 + r2 2 and k2 mj = we can write the equa-
tion of energy as:

ra 2 -2

2 2  r

Canceling out $ and dt by means of Eq. (1.6') we get

C2 C2 2 H( dr +=H.
2r4  drI 2r2  r

Let us introduce the variable z = C/r, then

dy. C

or (dz)2 z 2 2H,
Sdy C2 C

Furthermore, we introduce the constant e:

2H+ = _ eI
C2 C2

The constant e enables us to reduce the equation obtained
above to the form

dz dz + dy.

C2 C

After:,integration we get
z--

dz C
dDz =are cos ,

C2 C

z--
cos (9 D)=

and e

z -- -- ecos (Y + D),
C C

where D is the fifth arbitrary constant.
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Setting p = C2'/ and returning to the variable r, we get /18

-- e os (cpD)
and r p p

1+e cos (+) D) (1.7)

This is the equation of a second-order curve in polar
coordinates r and 4, related to the focus. In it e is the
eccentricity and p is the parameter of the curve.

For the ellipse we have

p = ae(l - e2), e < 1, H < 0;

for the hyperbola

p = ah(e 2 - 1), e > 1, H > 0,

where ae is the semi-major axis of the ellipse; and ah is the
actual semi-axis of the hyperbola.

For the parabola e = 1 and H = 0.

When the angle 4 = 4) = -D, the polar radius r will be at a
minimum. This is the perigee of the orbit if the Earth is the
center of attraction. When = a = -D + fW the polar axis in
the case of an ellipse will have a maximum. This is the apogee
of the orbit.

The angle 0, = 4 + D = 4 - T, is called the true anomaly.

It remains to find the dependence of 01 on time. It will
differ for the ellipse, the parabola, and the hyperbola.

Based on the equation

r2dp= Cdt,

where r=±
1+ ecos '

c=w (1.7,)

we get
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dO -'V (1.8)' -dt.
(1 + e cos 0)2 p3/2

Instead of 01 we introduce the new variable n = tan r;
then 2

0=2 arctg; ;

d 2dy.

1 + .q2

1-?
cos = -

The/left-hand side of Eq. (1.8) can be transformed thusly /19

d# 2d1 2 (1 + 12) dj

(1 + e cos 4)2 ( + 2) + 12 [1 + q2 + e (l - 12)]2

2 (1 + 12)d- 2 1 + 2 d
[1 + e + (1- e) 12]2 (1 + e)2 (1+ Y.2)2 '

where y--e
l+e

With reference to this transformation, the initial equation
(1.8) takes on the form

1+'12 - (1 + e)2 (1.9)
(1 + y 2)2  2p3 2I

Depending on the magnitude and sign of y, ,the solutions (or
integrals) of this equation will differ. The most practical value
is found in the case y 3 0, which breaks down into two variants:

y<O, e> 1
and y>O, e< i.

However, it is simplest to integrate Eq. (1.9) when y = 0 (parabo-
la). For it, we get
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p3 l2

Integration yields a formula for calculating the time of flight
along a parabola

3/2 2 3 2

where T is the time of transit of the spacecraft across the
orbital perigee ( 1 = 0)

For the ellipse and the hyperbola, the derivation of the
dependence of the angle 01 on time t by means of variable n is
both complex and is an artificial process. However, referring
to the fundamental nature of the resulting solutions, we present
it in full [58]. First of all we note that

1 1
-(l+y-

2)+ 1--
1 +2 y y 1 1 y- 1 1

(1 + yv 2)2 (1 + y12)2  V 1 + y 2  y (1 2)2'

therefore
(1 + q2) dy__ 1 dy + y- I d
(1 + y2)2 y + y2 y (1 + yV12)2

(1.10)

Let us apply to the first integral in the right-hand side of /20
the equation the formula of integration by parts

d -q 1 2 7'i
2
dy - 1 +

1 y 2  1 + y 2  (1 + yV2)2  i + y2

S+2 + yr2  .(I + V2)2'

hence

(1 + yV
2
)

2  2  
1 + y

2  
1 + y 

2

Then Eq. (1.10) becomes

(I + ) _ S (1 d 1.11)
(l + y2)2 2y + y2 2y 1 + 2(1.11

11



Using (1.9) and (1.11), we can write the integral of Eq. (1.8)
as:

S(t--) 1 -1 I + +dy (1.12)
p32 '(1 + e)2  I + Y2 + VI

Since

, .- -2e y+l 2

1--e ' V y 1-e

then (1.12) can be written thusly:

11 (t - T) = F -e}
p3/2 (1 + e) (1 - e2) -1 + y2 1 + (113)2

From Eq. (1.13) we directly get the formulas for calculating
the time of flight in the case of an elliptical and a hyperbolic
orbit.

For the ellipse (e < 1, y > 0), we have

d -9 1 arctg (Ti V).

We introduce the new variable E, using the equality

nll/V=tg-- E (1.14)

Therefore, we have

E=2 arctg (1 V1/);
21 2 E E 1

2 sin - cos -7=sinE
1 + yV 2  1/y 2 2 /Y

and Eq. (1.13) becomes /21

1Vr(t-) 2 1
aI (I =?2=3 2 arctg i YVsin E

(--e2) ( )( -e 2)  
2} y

12



or

(t-t)=E- sin E, (1 .13')
a/2e

where E is the eccentric anomaly.

Eq. (1.13') for calculating the time of flight in an
elliptical orbit is called Kepler's equation.

The physical meaning of E is clear from Fig. 1.3, in which,
besides the trajectory of the satellite motion in an ellipse, is
shown the trajectory of motion along a circle of point A that
has an x-value that is identical with the satellite:

FB=OB - OF, or r cos .= aecos E - aee.

But from the equation of an ellipse it follows't;that

r= a (1--e2)
1 + e cos %

Dividing the two last equations by each other, we get

C (1 + e cos 8)(cos E - e)
1-e 2

Therefore,

e+cos%
1 + e cos 0

or

1 - tg2 -

1-- tg2- 1 tg2 -
2 2

E ,8
1 + tg2 - 1 - ig -

2 2
l+e

1 + tg 2-
2

1 + e-(1- e) tg2 -
2

I + e +(1- e) tg2-

13



Y After obvious transformations we have /22

A
1 -tg - t

d ,c3 1$ tg" +e+ e tg tg? +etg2 =
E

0 F B =1 -tg2 -e-etg2 +tg12 etg
2 2 2 2

2 . (i e)t =( 1-'e)tg2

OpLuma 2 2

Fig. 1.3. For
deriving the and, finally,
formula re-
lating the
angles of the t (1--.14')
eccentric ano- ,2 1/ +e 2
maly E and the
true anomaly + Thus, we get Eq. (1.14'), which gives us a
Key: 1. AES; relationship between E and ji.
2. Orbit;
3. ae For the hyperbola (e > 1, y < 0), we have

d = . In1+ 21+ -Y
+ Y 2V--V Y'

We introduce the variable q, defined by the equality

1-etg = -- l- / -- e tg-.
2 1+e 2

After obvious transformations of (1.13), we get

r
3 (t - )=- e tg q - lntg \ - 2 ,

or am
t-T= r(eshq-q).

Thus, the problem of integrating the equations of unperturbed
motion (1.2) has been solved. As to be expected, its-,solution
depends on six parameters: a, e, T,'i, Q, and( 7 (or w), and in
rectangular coordinates -- on x0, y0, z0 , x0, yo0, and iz. The
trajectories are in the form of ellipses (periddic solution) or
hyperbolas (aperiodic solution). A singular case is the parabola
(e = 1) and a particular case of the ellipse is the circle (e = 0).

14



For the circular orbit we have

R3/2E=6=c; a=; I= 3,

where is the center of the angle.

The period of revolution for elliptical orbits, as follows /23
from Kepler's equation is

and does not depend on eccentricity.

We note that for elliptical orbits Eq. (1.8) can be readily
integrated by means of the substitution

tg l-- +tg E

By differentiating this formula, we get

sec2 d = fI+e sec 2 E dE
2 V-e 2

or (1±tg2 )d l /l-+e (1tg2-)dE.

Hence it follows that

d15= / - -e2 dE.
I-ecos E

On the other hand, from the equation 'cosE= e i-cos we have
1 + e cos .

1 -e cos E

1 + e cos 4 1- e2

Using this, expression, we can define the radius-vector of
an elliptical orbit in terms of the eccentric anomaly, that is,

r=a(1 -ecosE).

15



Further, from Eq. (1.8), with reference to these formulas, we
have

J- Ldt=(1 -ecosE)dE.
a 3/ 2

Integration gives us Kepler's equation (1.13').

Calculation Formuis for;Unperturbed Elliptical Orbit

Above we obtained the following fundamental formulas, which
can be used in calculating elliptical motion:

r2f=C, integral of areas
V2  I =H

2 r 1 integral of energy

r P - gneral formula for any motion /24
-- +ecos expressing the radius vector of

a satellite in terms of p, e
and q1 ;

a312  is Kepler's equation for cal-
1--= (E-esinE)' culating the time of flight in

elliptical motion; and

P 2 is the parameter of the orbit

and e = 1+ l is eccentri-
city. 12

In practice it often becomes necessary to use a series of
formulas deriving from the fundamental relations or obtained from
geometrical considerations. We present some of them.

We will assume that the point where the satellite is inserted
into orbit has the coordinates: geocentric latitude 0o and
longitude Xb . The azimuth of the absolute satellite velocity at
this point will be denoted by 60. From these quantities we can
calculate the inclination i of the orbit to the equatorial plane
and the argument of the latitude at the moment of insertion,
determining the distance of point B of the insertion into orbit
from the orbital node (Fig. 1.4). This argument"(u.0) is expressed
by the formula uo = w + a0, where d is the argument of the perigee
(w) of the orbit.

16



Z, Examining the spherical
triangle ABC, we can obtain
the following formulas:

0
cos i= sin , cos o0; (1.15)

4amop 2 sin u,-- ,X C *6_ sin i
ctg uo Cos o

O ftg otg +0 (1.16)

Fig. 1.4. Elements of orbit of
an AES. The angular distance of /25

meridian of the point of
Key: 1. Orbit; 2. Direction insertion from the orbital
toward perigee (r); 3. Orbital node can be defined from the
node; 4. Equator same triangle:

sill v-- in s in o; (1.17)
cos uCOS U0COS ' Coso , (1.18)

We will measure the longitude of the orbital node from the
point of vernal equinox. Here it can be determined as the direct
ascension of the orbital node. At the moment of insertion into
orbit, we have

S20 + vo=So, (1.19)

where sO is the sidereal time at the meridian of the point of
insertion B into orbit at the moment of insertion; and v0 is the
arc from the ascending node of the orbit to the meridian of the
point B.

Hence we can determine the arc 00. Obviously, in order to
obtain the longitude of the node X measured from some terrestfial
meridian, it is necessary to add to 00 the quantity (-sO'), where
sO ' is the corresponding sidereal time for the selected meridian.

The resulting formulas (1.15-1.19) are valid, of course, not
only for the point of insertion, but for any point on any orbit.

Now let us find expressions for the absolute coordinates
x, y, and z, and their time derivatives in terms of the orbital
elements Q, w, i, a, e, and T. To do this, let us consider

17



the spherical triangles xAB, yAB and zAB formed by the coordinate
axes and the arc AB. Using the theorem of sines for the direction
cosines of the radius-vector r of point B, we get

cos (rx.)-- cos i cos3 0 - sin u sin. o cos i;

cos (r )= cos u sin 2 + sin u cos o cos i; (1.20)
cos (rz)-= sin it sin i.

Therefore,

x- r (cos u cos 2 - in i sin 9 cos i);

y r(cos u sin + sin u cos cosi) (1.21)

z=-r sin t sin i.

Differentiating these equations with respect to t, we have

x=r" - r(c-os sinu 4-in2 c~ cosi) i;

y =rY -r(sin 2 sinu-cosQcost cosi)8; I
z=r cos u sin i-i r'- r.

r[ ,(1.22)

Here

u -- (j ) ; . (t); r=-r(t).

The resulting formulas (1.21), (1.22), (1.13'), (1.7'), and /26
and (1.14), that is, the expressions of the absolute coordinates
x, y, z, and their derivatives x, y, and z in terms of the:'r
orbital parameters (elements) 0, w, i, a, e, .-dnd time t are the
solution to the system of equations of unperturbed motion of a
cosmic body (Earth satellite). For each point in space at which
the satellite is located, from formulas (1.21) and (1.22), by
knowing the five geometric parameters defining the orbit and the
one kinematic parameter (T),for any moment of time we can calculate
the absolute coordinates and the satellite velocity.

Note that often instead of parameter T the more convbeient
parameter M6 appears.

Let us denote ME-esiE=n(t to)+Mo'

18



where

M is the mean anomaly;

n=1i'a-3/2 is the mean motion;

tO is any specific (initial)
instant of time;

Mo=n(to--)' is the mean anomaly for the
instant t0 , the so-called mean
anomaly of the epoch; and

MO is the parameter replacing
T and characterizing the value
of M for the instant t0 .

Let us find the expressions for the orbital parameters in
terms of the elements at the end of the powered flight section:
vo, 80 (angle of inclination of velocity vector to the horizon),
and r0 .

Based on the formulas

a(--e 2) ; rC2=C; p=C
r=

1 + ecos 4

the complements of the velocity vector can be expressed thusly:

in terms of the radius-vector

v,,=-= -e sin 8; (1.23)

in terms of the transversal

Hence the modulus of velocity is

v2 =- (1 +2ecos&+e2); (1.25)
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the velocity at the perigee (maximum) is /27

v,= p(1+e) (1.26)

and the velocity at the apogee (minimum) is

v= .--L(1 - e). (1.27)

For the radius-vector of a satellite at the perigee (mini-
mum), we have

r,= a (1 - e); (128)

at the apogee, we have

a(1e) (1,29)
r.=a(l+e).

Substituting the values of v. and r. into the energy equation
with reference to the fact that p = a(l - e2 ), we get

v2 H =- (1.30)
2 r 2a

Thus, total satellite energy depends only on the semi-axis a of
the satellite orbit.

Replacing in Eq. (130) v and r by v0 and r0 at the point of
insertion into orbit, we get

a -ro-, (1.31)2-k

where k= v

The quantity k is the square of the ratio of velocity v0 at
the initial point to the velocity in the circular orbit with
radius r0.
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2
Actually, when k== o.-1,, based on Eq. (1.31) a = r0,

which corresponds to the circular orbit. In this case,

V -- - =const.

The flight velocity Vci [ci = circular] in the circular orbit
(r = const) is constant and can be expressed by the formula:

Vci =f/

This velocity is called the circular velocity at the dis-
tance r from the center of attraction.

If in Eq. (1.31) we set k = 2, the semi-axis of the ellipse /28
a becomes equal to infinity, that is, the elliptical orbit is
transformed into a parabolic orbit. Here we have

Vpar I

which is called the parabolic velocity at distance r from the
center of attraction.

If we take r = R (where R is the radius of the Earth) in
the formula for the circular velocity, we get the first escape
velocity

and on analogy

is called the second escape velocity.

Let us find the expressions for the orbital element p and e
in terms of the initial parameters ro, v0 and 00 defining the
ellipse. Since
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rv,= t'p= rv cos 0

(where 0 is the angle of inclination of the velocity vector to
the local horizon), the orbital parameter is

p= rok cos2 o0. (1.32)

Replacing in Eq. (1.32) parameter p by its expression

ro2 (1-e) , we get the following formula for eccentricity e:

e= /(k - 1)2 cos" 0o- sin2 0o.  (1.33)

The angular distance (true anomaly) of the point of insertion
from the orbital perigee will be determined from the polar equa-
tion of the ellipse by

cos o (k cos2 0--1), (1..34 )
e

and the angular distance of the perigee from the orbital node
will be

w=uo-o. (1.35)

If at the end of the powered section 00 = 0, the orbital perigee
coincides with the end of the section, and here o=0.

The apogee distance and the eccentricity are determined by /29
the formula

k (1.36)
2 -- k

e=k--l. (1.37)

The period of revolution of the satellite

T= 2 ro a 2

p J 2 2--k j (1.38)

depends only on the orbital semi-axis a.
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Selection of Position of Orbital Plane

The position of the orbital plane relative to the Earth is
defined by the latitude and longitude of the point of insertion
into orbit and by the azimuth of the velocity vector at this
point.

The position of the orbital plane relative to the ecliptic
and, therefore, relative to stars and the Sun is characterized
by the inclination of the orbit to the equatorial plane and the
longitude of node 20. The inclination of the orbit is uniquely
defined by the azimuth (60) of the velocity vector at the point
of insertion and by the latitude (*0) of this point. The longi-
tude of the node is defihed by these same quantities, and, in
addition, by the time of insertion into orbit. The time of
insertion must be taken into account, since the launch is made
with Earth rotating in absolute space.

For convenience, let us use sidereal time s which gives
directly the angle of rotation of the globe relative to fixed
coordinate axes.

Thus, the position of the orbit at any instant of time rela-
tive to Earth and Sun is defined by the quantities 0o, X0, 60
and sO . These quantities are selected based on the purpose of
the satellite and its design features, and also several other
factors. For example, if the satellite.has solar batteries, then
it is useful to specifically orient its orbital plane relative to
the Sun. If the satellite has a celestial orientation system,
these quantities should be selected with reference to the capa-
bilities of its normal functioning.

Let us dwell in more detail on selection of the orbit relative
to Earth, which is significant for observation of the satellite,
setting up communications with it, and for several other purposes.

Depending on the parameters of the insertion into orbit, the
rotation of the Earth has different effects on the initial ab-
solute satellite velocity. Since at any point during the powered
section the influence of the Earth's surface velocity can be
assumed constant, the increment in velocity in converting from the /30
relative to the absolute coordinate system is

\vzO 0.465 cos o sin & cos Oo=0.465 cos i cos Oo. km/sec,

where the numerical coefficient is the Earth's surface velocity
at the equator.
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The formula shows that
in order to obtain the
most distant orbit it is

1 desirable that the latitude

E Hanpa.neuu of the launch point i0 be
Hoa selected as close as possible

nepuzeu to the equator, and the

fs/amofv 2 azimuth 60 -- as close as

f/7norotmb 3  possible to 900.

0 i t Denoting by Pj and Xj
Y6en opfumbi 4 the latitude and longitude

Fig. 1.5. Selecting the posi-of point E on Earth, res-
i opectively, above which at a

tion of the orbital plane. given instant tj the satellite
will pass (the satellite is at

Key: 1. Direction toward peri- the zenith over this point
the zenith over this point

gee; 2. Equatorial plane; at instant t.), by inspection
3. Orbital plane; 4. Orbital of the triangle DBE (Fig. 1.5)
node we can obtain the following

formulas:

sin ,'= sin 0o cos -+ - cos o sin (, cos ,; (1.39)

j =_o+ AkXJ Akrot ' (1.40)

s cos P- sin 1j sin o
COS os cos €0 ' (1.41)

sin AP sin Bo
sin A),S cos ]j Cosj (1.42)

where AX. rot = wE(tj - to) and wE is the absolute angular velocity
of rotation of the Earth [rot = rotation; E = Earth].

If the satellite orbit is near-circular, it can be assumed,
approximately, that

t-to= T P1-tr . (1.43)

When using Eqs. (1.39)-(1.43), we must consider that if the
azimuth of the velocity vector relative to a rotating Earth (60') /31
is the initial azimuth, then we must convert to the absolute
azimuth 60 by the formula

, 0.465 c,,s ,, cos B, (1.4 4)
v cos 00
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Using these formulas, the projections of the orbit onto the
Earth were calculated for different azimuths at the point of
insertion, whose first orbits, according to the change in angle
$j from 0 to 3600, are shown in Fig. 1.6. In order to obtain the
projections of the other orbits, we must shift the curves along
the latitude westerly, by the quantity (for the lower orbits)

Ax, 15.22 (n -- 1) T ,

where n is the ordinal number of the orbit, and Th is the period
in hours (h).

1.2. General Problem of Inserting Spacecraft into Orbit

Let us examine the case of the insertion into orbit of a
satellite by means of some two-stage launch vehicle (LV), whose
first stage uses a ramjet engine (RJE) and whose second stage
uses a conventional liquid-propellant rocket engine (LPRE).
The theory presented below can be easily extended to the case of
a large number of launch vehicle stages.

We know that the use of an RJE in the atmospheric section of
a flight makes it possible to substantially improve the power
capabilities of the LV through use of air oxygen in the Earth's
atmosphere as oxidizer.

We will not dwell on methods of calculating RJE, advantages
and disadvantages of RJE compared to other types of engines,
and the difficulties confronting the builders of this kind of
engine. We refer the reader interested in these matters to
certain published studies (for example, to [45, 571).

Our problem will be determining the optimal law of control of
the LV engine with RJE over the powered section, that is, deter-
mining the optimal control program with respect to the angle of
attack a and the mass flow rate of fuel 8.

Due to the complexity of the problem we are to solve, it is
not possible to obtain analytic functions. Therefore, the method
of optimization presented here has been developed as applied to
electronic computers.

F6rmulation of the Problem /33

We will consider the motion of an LV under the following
assumptions and presuppositions,

1. The launch vehicle is regarded as a material point.
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Fig. 1.6. Projections of first orbits for different
azimuths 60 at point of insertion.



2. The motion of the LV is considered in the vertical plane
coinciding with the plane of a great circle of the Earth.

3. The amount of fuel in the first stage, and the total
weight of the first and second stages, are given.

4. The field of gravity is central, and the Earth is not
rotating.

5. The limiting values of the variation in the angle of
attack amin and amax are small, as the result of which we will
assume that cos a =1, sin a = a (in the extra-atmospheric section
the selection of the boundaries amin and amax will be made by
using the terms P cos a and P sin a instead of P and Pa in the
equations of motion (1.45)).

With reference to the foregoing assumptions and presupposi-
tions, the system of equations of motion will become

SP-cxSq ._ _si

m r

Pa + cySq , cos+ Vcos 0 fA;
mV r2V r

L = r V cos= f; (1.45)

h= V sin 0= f4;

mh = - I = fs,

where

cx=CXo(M)+C ;(M)a2 c =c'(M)a.

Let the following constraints be assigned:

Ei=(a - amin)(a - max..) 0; (1.46)

Ea- (- 1min) (@ -IPmax) < 0; (1.47)

3 = (n,. - bm,,,,) (ny, - n max) < O; . (1.48)

,4=q- q9, 0; (1.49)

Z6=V-(h)<0. (1.50)

Here and above amin, amax, min, max, nyl minny l max, and

qmax are some preassigned constant numbers, and R(h) is some
func.tion of altitude, assigned in advance on the condition that
for motion along the curve V = k(h), the equilibrium temperature
of the LV's surface at some characteristic points.,on the surface /34
is equal to the allowable maximum value;
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V is flight velocity
6 is the angle of inclination of the velocity vector to

the local horizon
L is flight distance
h is flight altitude
m is instantaneous mass of the LV
P is engine thrust
a is angle of attack
B is mass flow rate of reaction mass
S is characteristic area
q is velocity head
P = 3.98*105 km3/sec2

r is radius-vector
rO = 6381 km -- the mean radius of the Earth
cx  is the drag coefficient
cy is the lift coefficient
nyl is the transverse load

M is Mach number
Psp is specific thrust.

The inequality (1.46) is a constraint on the angle of attack
a, and the inequality (1.47) is a constraint oi the mass flow rate
of fuel. Since we will take the angle of attack and the mass flow
rate of fuel as control function, inequalities (1.46) and (1.47)
can be called constraints on the control functions. Inequality
(1.48) is a constraint on the transverse g-load ny1 , which as we
know is defined by the formula

c~aSqr
2

As we can easily see, ny1 depends explicitly on the angle of

attack a. However nyl depends also on the phase coordinates (for

example r, m, and so on). Usually this kind of constraint is
called constraints on the zero-order phase coordinates.

Inequality (1.49) indicates that the velocity head q is

constrained. We can show that q = 0, a  0, while at the same

time d 0. Customarily, this kind of constraint is called

a constraint on first-order phase coordinates. The inequality
(1.50) is a constraint on the equilibrium temperature of the LV's
surface at some characteristic points thereon. It can shown that

85 5 = 5
S0, - 0, a - 0. This indicates that constraintaa Da dtj

(1.50) is also a constraint on first-order phase coordinates.
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Let us take as the optimality criterion the minimum mass flow /35
rate of fuel during the insertion section

J= i'dt (1.51)

to

Suppose it is required for the LV to pass from one stage at
instant tO

S(to)= Vo, (to)= 00, L(to)= Lo, (to)=h , m (to =m (1.52)

to the final state at instant tf:

V(Tf) = Vf, e(tf) = Of, L(tf) = Lf, h(tf) = hf. (1.59)

The problem is formulated as follows: among all the admis-
sible controls a and satisfying constraints (1.46) and (1.47)
and converting the phase point from position (1.52) to position
(1.53), we are to find those at which the trajectory V,6, L, h, and
m, corresponding to them and satisfying the differential relations
(1.45) would give a minimum for functional (1.51), in order that at
any point of the trajectory the inequalities (1.48), (1.49), and
(1.50) are satisfied.

We will assume that the functions V, 0, L, and h are continu-
ous and are piecewise-differentiable; the function m is continuous
and piecewise-differentiable, and that the moment of staging
changes discontinuously by a specific quantity; the functions a
and belong to the class of piecewise-continuous functions; Bmin,
amax, amin and amax are such that they are different for different
stages.

Since the LV we are considering is assumed to be of the two-
stage (,type, the thrust, aerodynamic, and other characteristics of
each stage differ. This means that this problem is in the category
of discontinuous variational .problems of the second type.

One feature of this kind of problem is that at the instant of
staging the right-hand members of the system (1.45) suffer a
discontinuity. We will assume that the surface of the discontinui-
ty is specified by the equation

f=m-tn,- Am=O, (1.54)

where m is the instantaneous mass of the LV; m2 is the mass of the
LV after staging of the first stage; and Aml is the mass of the LV
expended in the separation of the first stage.
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Method of Optimization

To solve the problem formulated above, let us apply the L.S.
Pontryagin principle of the maximum [53]. Under the principle of
thetmakimum, we introduce some function H:

5

H= Y Xfi (1.55)

where Xl are certain undetermined multipliers.

Then the first condition for the stationary character of this /36
functional in vector form will become:

Oxi  OXIxi 
5x6(1.56)

(XI:V, x 2 =0; x , =L; x 4 =h; x 5 =m)

The multipliers '3, *4, and 5 are defined from the equations

OH , L + 2 . + 3 I-
ou du du du

O4 nO

O Ou (1.57)

(u=, ),

where (4 and 5 are the total derivatives in time of the functions
4 and 5. Eqs. (1.56) and (1.57) indicate the fact that the

desired extremal in the general case is a piecewise-smooth curve
consisting of a finite number of sections, each of which either
lies at the boundary of a given region (1.46) -- (1.50), or else
is within these regions. In the second case, the optimal control
is defined from the condition

Ou =0. (1.58)

In this case all the multipliers 'j = 0 (j = 1, 2, 3, 4, 5).

If the control obtained from Eqs. (1.58) does not satisfy
certain constraints (1.46)-(1.50), it is determihed from the condi-
tion of belonging to these boundaries and the condition of a
maximum of the function H. In this case, aH/3u X 0. This indi-
cates that one or two multipliers lj are nonzero (the maximum of
multipliers j simultaneously nonzero cannot exceed two, since
there are two control functions), and a wholly determined multiplier
'j X 0 occurs only when j = 0 corresponding to it. For example,

30



the optimal control is a control corresponding tbothe boundary
nyl = nylmax I only the multiplier 3 whose numerical value is

determined from the solution of Eq. (1.57) is nonzero.

According to Pontryagin's principle for autonomous systems
in free time tf, the exact upper bound to function H can take on
the same value, equal to zero, along the entire trajectory, that
is, at any instant of time the following equality must be satisfied:

H- = H+  (1.59)

The sign. "-" indicates that the function H is taken at the left, /37
and "+" is taken at the right of the fixed-point at the given
instant of time.

As for the multipliers Xi, at the moment the first-order phase
coordinates arrive at the bounds of the admissible regions, and
also at the instant of staging, they can suffer a discontinuity of
the first kind.

The conditions for a discontinuity of the multipliers Xi at
the instant of insertion are as follows:

-- at the boundary p4 = 0

= +v ; 4 + OE4 (1.60)
dxi

-- at the boundary *5 = 0

I Ox + VJ de5 (1.61)Ox/

At the moment of staging, the conditions of discontinuity of
the cofactors are of the form

SOf (1.62)

Conjugate System of Differential Equations

As already indicated above, the characteristics of each stage
differ. Because of this, the trajectory breaks down into individu-
al stages separated by the surface (1.50), in each of which stages
the function H is of the form

H= k,f, + Af 2 + f 3 + ka4 f+ Bfb.. (1.6 3)

31



Eqs. (1.56) in phase coordinates at each of these stages will be:

dV V dv dV oV OV dV

d
f l  '(f2 of, . Of 4 xd" 4  ,, 5

d00 dO d0 dO d00 do

,=o0; (1.64) -

dfl df 2 df 3 d+ i d1 4i,= - ,1 2 3 +3 O54 5
dh ah (h dh h dh

df, f 2 .+ 3  d 4 + _II

dm Om dm am d m
I

Here

f I OP de
V m Ov v Sq-

- cos0;
00 r2

of, 1 dP 1 cxSV2 -
2 _. sinO;

h - ,-  2 Oh r /38

ofi_ _ (P - cxSq);
Om m2

df2 _1 ( -P l' Sq+cy S QV - -(Pa+ cSq)+

oV mV oVV dm
cos 0

+ cos + -;
r2V 2  r

O2 ±.- sin ------ sinO
00 r 2V r

2R V cos 0

Odf 1 P 2c + UoSV_ )+ 7cos

Of _ _Pa +cySq
O 2 = - --- -----

dV r

df3- ro V sin 0;
o r

Of rLo V cos O;
dh r2

0f4= sin 0;
OV

Of4- V cos O;

0032
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- -3 Sr (2n, - VmIn - nbOmax) Cyq- ' V
OV my

.3 _ - s (2n ,- n1 m,.!- n ,,,) cyv  cyq
Oh mI

di3 _ CUS q r2 (2n., -n sma - n max);
Om m2 L

i e V3sin O+Vft;
2 Oh

4 _ 3 de V 2 sin +/f f-V
OV 2 Oh

d 1 Of i;SV 3 cos + V ;
dO 2 Oh 00

O 4  I 02Q V n 0-- O Vf--QV Of /39
-- -V3 sin 0- vf If QV;'Oh 2 Oh2 Oh dOh

Om am '

j,= _ Ol(h) V sin ;
Oh

0E5 _Ofl 01(h) sin 0;OV OV Oh

V cos 0;do 00 Oh

05 __fl 021(h) sn 0;
Oh Oh Oh2

O 5s _Of,.
Om Om

V a* \M M '

Ocy 1 Ocu

OV a* OM

As indicated earlier, the LV we are considering:is:ia :two-stage
LVusing a RJE in the first stage, and a LPRE in the second.

As we know, the specific thrust of an RJE for a selected

engine and specified fuel components depends basically on the actu-
al excess air coefficient a and the Mach number M, that is, it
can be approximated by a polynomial of the n-th degree

p =Ao(M).+ A(M)a,-A(M)a +...+A, (M)a, (1.65)
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where

aO Dok ; Do =  ; k,=a(M) a+b(M);

AO(M), Al(M), A2 (M), ..., An(M), a(M), b(M) are some functions of
the M number; k1 is the coefficient of flow compression in the
LV body; F is the area of the diffuser inlet; is the coefficient
of diffuser mass flow; p is the atmospheric density; and K is
the stoichiometric ratio.

Let us limit ourselves to examining only the first two terms
of series (1.65). Then the thrust P will be of the form

P=go [AIDo (aa -- b) +Ao ,]. (1.66)

The thrust of a LPRE, as we know, is determined by the formula /40

P = go(Jo - Sa.), ( 6 7)

where g0 = 9.81 m/sec 2 is the equation of terrestrial gravity at
sea level; J 0 is the specific thrust of an LPRE (in vacuo); Sa is
the area of the nozzle discharge; and eo = RT/g 0 (R = 287.05 m2/
/sec 2 .deg is the gas constant per kg-mass of air, and T is air
temperature).

Then the partial derivatives in P will be:

-- over the section up to the separation of the first stage

OE AD 1 i- Li I AL (aa+b)+
-go V a* M a*A dM

+ I d(a dC+ab + dAn
a* OM aM a* OM

P goAD 0 o (aa+ b);
Oh Q dh

-- over the section after separation of the first stage:

OP=0;
dV

dP g.dOQP= - goeoSo .
Oh dh

In solving Eqs. (1.64), we everywhere assumed that the speed
of sound a* is constant in altitude. It was also assumed that the
functions p, 1(h), p, c , cx0, a, b, AO, and Al, and also their
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0 02Q ol (h) 021 (h) , OcxF Ocy Oa Ob 0Ao
Partial derivatives ,and Oh M Oh Oh2M'dM M

are known in advance and specified in the form of tables or ap-
propriate graphs.

Determination of Optimal Control

At any fixed moment of time T, the phase coordinates xi and
multipliers (cofactors) Xi are fixed. Therefore the function
(1.63) at this instant depends only on the controls a and B. We
also need to find a and B such that the function H takes on its
exact upper bound.

We will show that the constraint on the transverse g-load n
can be reduced to a constraint on the angle of attack a. 1

Actually, in order for the transverse g-load nyl at any in- /41

stant of time T not to exceed its specified value, it is necessary
that the angle of attack a lie in the interval

aml, .< a < ah uax ,.

where
n. /1mi L n bmax I

aZmln- ' ' lmax IqcSqr2 c Sqr2

Therefore, it can be assumed that at any fixed moment two
constraints are imposed on the control function a:

aminl ( amax aimin <a < Imax

The last two inequalities can be replaced by the single in-
equality of the form

a2,1nIn< a m< a. , (1.68)

where a2miln amln, if amin > amin;

()L2min= a 1111 11 , if Iaminh a(nln; i

2max = (Iax, if aniamax almax;

a2lmax= amax, if amax > almax- S(1.69)
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The function H can be represented in the form:

-- over the section up to the separation of the first stage

H= Aa 2 + Elia + FaP + Nl, + Tu; (1.70)

-- over the section after the separation of the first stage

H = H,a 2 + E,,a + F,2 a4+- N,12 + T 2,,. (1.71)

Here

Al _ (gADa-ic Sq;

El= A oA1Doa + (goAjD,b-+ cSq);
m mv

F,1 - go Ao;
mV

N,= xl goAo - ;'5;m

T11 = I( goA 1DOb- cOSq r- Sill COS
m r r rV

+_ 3 ro V cos 0+ 4 V sin 6;r
A12  -.,LcaSq"

m

A9 /42
E12 (c Sq - goeoSaQ);

F12 = t gJo;

mN12 = 4i goJo- X5;

12 - ( goe 3SaQ+ cxoS q  si V
m r2 r( rV)

14 V sin O -j- ro 3  V cos .

Similarly, let us represent the relations imposed on the
trajectory for motion along the boundaries 4 = 0 and 05 = 0. For
the LV to move along these boundaries, the following must bbtain:
j = 0< and 5 = 0.

In expanded form, this can be written as:
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-- over the section prior to separation of the first stage

4= A a '  E21- ' N2 ' T21 ; (1.72)

5 =- Asia' TE 3,a4- N +_7 ; T31_ 0, (1.73)

-- over the section after separation of the first stage

4 == A, 2a' + E22a + N2,3- + T22 =0 (1.74)

5= A32c 2 -- E 2a N 3 2 +T3 2 =0. (1.75)

Here

A 21= _Q VV cSq, EM =-V g10Da;

A rl c Sq; E 2 1  gA0 a;m m

N21 QVoAo
m

T 2 1= i 00 V" sin 0+ qV goAlDob- cxSq r" sin 0;
2 Oh m r2

Aal c,Sq; E= goA 1Da N= goA

.m m m

T --- g)AIDDb - crnSq p sin0 01(h) V sin 0;
m r2 Oh

A 22=A 21; E22=0; Ns,= V goJo;
m

T22- -1 V3 sin0-QV goeoSaQ +.cxoSqm +-- sin );
2 dh m r2

A32,= A3; E,2=0; N3- = i o;
m

T3 oenS,,Q + cxOSq si 01 (h) V sin 0.
mn r2 Oh

Let us present an example of the selection of the optimal con- /4
trol a and B at some fixed instant of time t, where we will assume
that at this instant no staging occurs. The selection of the opti-
mal control at the instant of staging will be considered a little
later.

As we can see Eqs. (1.70) and (1.71) are identical with
respect to variables a and B and differ only in the coefficients
appearing by these variables. These coefficients at any instant
of time (except for the instant of staging) are uniquely defined.
As a result, to condense the notation, we replace Eqs. (1.70) and
(1.71) with a single formula of the form

H= Aa+ Ea+ Fa'+ N 1-T. (1.76)
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The coefficients A, E, F, and F of these formulas are equal to the
following:

-- over the section before separation of the first stage

A=A11; E=El; F=F,,; N=N,,; T=T ;

-- over the section after separation of the first stage

A= A 12; E= E12 ; F=F12 ; N=N 12; T=T12.

It is required to find in Eq. (1.76) a and satisfying the

inequalities

a2min , a , a2max;

where the function H would take on its largest value.

Let us examine the case when the constraints (1.49) and (1.50)
have been satisfied. We will show that the function H takes on
its largest value only along the boundaries 8 = Bmin and $ = Bmax-

Let us set up the determinant:

02H 02H

oa2 dOad 2A F - 17.
a agH )2H F 0 2  (1.78)I F0
OaO 0P2

This shows that the function H can have within the specified
region [domain] (1.77) only a saddle-point.

Since the mass flow rate of appears linearly in the function
of H, this means that along the boundaries a = a2 min and
a = a2 max , the function H takes on its largest value either when

S= Bmin or when B = Bmax, that is, the maximum of the function H
can be realized only at the apices of the rectangle (1.77). Thus,
the maximum of the function H can be realized only along the
boundaries B = Bmin and = Bmax*

We will present points at which the extremum of the function /44
(1.76) can be realized as the LV moves within the domains (1.49)
and (1.50), in final form:
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1) 2mIn Pni; 1
2

) amax mlfl

3) 'a2m ax 
(1.79)

4) a2max ax;

2AE + FP,,,Iax6) a2 = 2A

To condense the notation for defining the optimal control as
the LV moves along the boundaries (1.49) and (1.50), let us
introduce some polynomial

v= Boa2+ Ba+ B2 + B,=0. (1.80)

The coefficients BO, Bl, B2, and B3 of the polynomial are
taken as equal to the following:

-- over the section before separation of the first stage:

a) for motion along the boundary (4 = 0

Bo=A.,; Bi= E 21; B2 =N 21 ; B,=T 21;

b) for motion along the boundary E5 = 0
Bo= A 31; BI =E,,; B 2=N 31; B 3,=T, 1

- along the section after separation of the first stage

a) for motion along the boundary E4 = 0

Bo= A22 ; B1 =E2; B2=N 22; B3 =T 22 ;

b) for motion along the boundary E5 = 0

Bo=A32; B 1= E,2: B2= N; B,= T.

Polynomial (1.80) is a generalization of the polynomials
(1.72), (1.73), (1.75), and (1.75).we have already introduced.

By determining from this polynomial and inserting it into
Eq. (1.76), we will have

H= B4a3+ B,a2 Be B,, (1. 81)
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where

B B0 ; B,= A - (FB,+NBol;
B 2  B2

NB,
B,=E (FB., NB): B,=T--N

Then we can quite readily find the points at which the func- /45
tion H can have an extremum for motion of the LV along the bounds
(1.49) and (1.50). They will be:

- B - 3B4 B6 Boa + Bas + B3
1) a, 3B4  B1

Bi + B --4Bo (B2Pm1 n + B3)

2) a,- 2B mI;

- BI + /B I- 4Bo (B2% ln + B3 )
3) as- 2B, m ,

B, + -1 B - 4B, , (B2 iax + B,3 )

4) u2Bo Irmax (1.82)

- B + V/B2 - 4Bo (B 2P.,ax 4- B3)

5) a, 2Bo max;

Boa2nm1h, + Bla2min + B3

Ba) max + BIl2max + B3

7) amax 3 B2

The values of al, a2, c, a , a, a6,. and a7 , and also B1 , B2,
and B3 obtained by Eqs. (1.79) and (1 82) must satsify the cor-
responding conditions (1.77). If for each point these conditions
are satisfied for both a and B, and, in addition, the conditions
(1.49) and (1.50) are satisfied, the resulting point is left for
further investigation; but if these conditions are not satisfied
or if one of the values of a or B are imaginary, it is discarded.

It should be noted that at any instant of time the number of
points satisfying these conditions is smaller than is presented
here. Actually, many of these points preclude each other. Some
of them are imaginary. However, we cannot in advance say exactly
to which point at a given instant of time the optimal control cor-
responds. .. Therefore, we must check all these points and leave
those which satisfy our requirements.
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In the following we will not qualify this in every instance,
and if we consider a particular point, we will assume that the
conditions specified for it have been met.

By calculating the values of the function (1.76) for points
satisfying all the above-listed requirements, let us select the
point at which the function H takes on its exact upper bound. The /46
control a and B thus obtained is the optimal control at any fixed
instant of time T (except for the instant of staging).

Determining Optimal Control at Instant of Staging

As already indicated earlier, at the instant of staging Bmin,
Bmax, S, Psp, Cx 0 , amin, and amax can suffer discontinuities, as

can other LV parameters; the Lagrangian also suffer discontinuities.

We are required, speaking figuratively, to "dovetail" two
different sections: the section prior to staging and the section
after staging. Condition (1.59) will be the criterion of this
"dovetailing," and this condition must be realized for an exact
upper bound of function H+ in terms of control.

From conditions (1.62), we have:

/- = . (i= 1, 2, 3, 4),

= X + V,2 (1.83)

that is, at the instant of staging only the multiplier X5 suffers
a discontinuity, and the rest are continuous.

The function H+ at the instant of staging is of the form
(1.71). All the coefficients of this function, with the exception
of N1 2 , are known at this instant, since the characteristics of
the LV after staging are specified ahead of time, and the multi-
pliers Xi (i = 1, 2, 3, 4) at the instant of staging are con-
tinuous. As for the coefficient N12, because the multiplier X5
has a discontinuity, we as yet do not know this coefficient.

Let us note that the formula functions (1.79) and (1.82)
serving for the determination of the optimal control within the
sections separated by surface (1.54) are valid also at the instant
of staging, and in those functions where the coefficient N does
not appear, this control is uniquely defined both at the left and
at the right, and it requires only that into these functions the
LV parameters corresponding to the given stage be substituted.
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As we can see from Eq. (1.79), the coefficient N does not
appear in the formulas for the optimal control, and in the func-
tions (1.82) it appears only in formula 1).

Let us define the optimal control and thus the coefficient
N1 2 for the case when staging occurs within the domains (1.49) and
(1.50).

Let us write the condition (1.59) at the instant of staging
in expanded form:

H-=- A-a- - Ella-+ Fla-- Nl I T=

= A2a+ +
2a+ + Fl2a+?+ + N,"+ + T 1 = H+. (1.84)

Since H- at the instant of staging is known, condition (1.84) /47
can be represented as:

A ,a +2 + E,a+ -T,2-H- -- (F,2a+  N 2) +=0. (1.85)

We note that only one of the limiting values Bmin or Bmax
can be the optimal value 8+, just as B- (with the only difference
that their numerical values [Bmin and Bmaxl correspond to the
second stage and can differ from the numerical values of min and

Bmax at the first stage).

Let us denote the part of the"function (1.85) independent of

8+ by C, that is

C-.= A,,a-'  I E,,  -- T -- H-. (1.86)

Let us substitute here the values a+ corresponding to points
1, 2 and 5 from formulas (1.79).

We note that the value of 8+ corresponding to point 5 is
substituted into formula (1.86) only if it satisfies condition
(1.77), and the coefficient Al2 < 0. It is not considered in the
remaining cases.

Since the points 1, 2 and 5 correspond to 8 = 8min, this
means that the following must obtain at these points:

F12 +4-N12 <0, (1.87)

or, because amih > 0, C must be greater than zero.
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Let us select from points 1, 2, and 5 those for which C > 0,
and let us reject the r-emaining.

Let us substitute the remaining points into the formula

CI=C+F,,a. (1.88)

and, let us dwell on the points for which Cl is at a maximum. The
coefficient N12 corresponding to the points thus selected is
defined by the formula

N2H-- A,-a+ 2- Ei2a+ - F++ - i (1.89)

Let us substitute into Eq. (1.86) the values a+ corresponding
to points 3, 4, and 6 of formulas (1.79), where the latter point
is substituted into this formula only if the conditions (1.77)
and Al2 < 0 are satisfied for it. Let us select from these points
those for which C < 0, and let us reject the rest.

We substitute the remaining points into Eq. (1.88) and we
dwell on the point at which Cl has a maximum, The coefficient N1 2
corresponding to this point is defined by formula (1.89).

By carrying out this study, we find at each of the bounds
f = Bmin and B = Bmax one point each (the case when there is no
point of this kind along any of the bounds is possible), at which
the exact upper bound of function H+ can be realized.

Now we must select from these two points the one for which, /48
at the coefficient N12 found for it the function H+ realizes its
exact upper bound at this point.

Obviously, if we take as the optimal control the point for
which the coefficient N12 is the smallest, we obtain the result
that at any other point for the coefficient N12 thus determined the
function H- is smaller than at the point we selected.

Thus defining the optimal control a+ and B+ and the coeffi-
cient N12, we can also find the multiplier X5+:

-.. " gol,,- N12. (1.90)

Now let us show that the control thus selected always exists.

If A12 < 0 and a. , 2+ (see Eq. (1.79)) satisfies the condi-
tion (1.77), by substituting al+ and a2+ into Eq. (1.86) we can see
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that C(al+ ) > C(a2+). Hence it follows that if C(al+ ) < 0 (the
case when the optimal control is absent along the bound + = min,
then C(a2+) < 0 and this means that the optimal control exists
along the bound 8+ = 8max. If C(a 2+) > 0 (the case when there is
no' optimal control along the bound 8+ = max), then C(al+) > 0
and this means that the optimal control exists along the bound
8 = Bmin*

If Al2 > 0 (or Al2 < 0, but al+ and a2+ do not satisfy condi-
tion (1.77)), obviously the function H+ realizes its maximum along
the boundaries a+ = a2 min and a+ = a2 max Substituting into
Eq. (1.86) the values of a+ , we uniquely define the sign of C,
and hence thus the values of 8+ corresponding to the bounds.
Therefore, in this case there is an optimal control.

Now let us assume that Al2 < 0, and that one of the values of
al+ or a2+ (for example, al ) does not satisfy condition (1.77).
Obviously, if al+ > a2 max , then we must select a2 max ; but; if

a + < a2 min , we must take a2 min . Let us denotetthis control by
the symbol a9. Since a2 + satisfies condition (1.88) and a1 + does
not, then clearly ag is in this segment [al+,a2+1]. On the other
hand, the maximum of the function C (see Eq. (1.86)) is realized
when a8 

= -E12 /2Al 2 . By comparing the formulas for al and a2
(see Eq. (1.79)) with the formula for a8, we see that the value of
a8 lies outside the segment [a +,a 2 +]. This means that in this
segment the function C either decreases or increases with respect
to a. We earlier showed that C(al + ) > C(a2t). Now we can write
that C(al+) > C(a9 ) > C(a2+). Further considerations are analogous
to the case when Al2 < 0 and al+, 2+ satisfy condition (1.77).

Thus, at the instant of staging the optimal control always
exists and does so uniquely (an exception may be found in several /49
singular cases, which we do not consider here).

Now let us define the optimal control and thus the coeffi-
cient N12 for the case when staging occurs along the bounds (1.49)
and(l.50).

As already indicated, in the formulas 1)of the function (1.82)
there appears the unknown coefficient N12. So a3 and thus 81
cannot be determined directly from these formulas.

We can see that at the instant of staging the coefficient
B4+ and B6+ do not depend on the coefficient N 2, while B5

+ and
B7+ are functions of NI2. Let us represent B5 , N12, and B7

+ as
functions of the angle of attack a3+, and the coefficients
B4+ and B6+ (this can be done by using formula 1) of functions
(1.82) and the coefficients earlier obtained for the formula
(1.81)).
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3B++ B- (1.91)

2a:

3 (B4+ + 2Al1 : + B6 ) B" (1.92)
N 12= 2Ba

(3 2 + 2A a+ + B-) B!

B 2= T 2B- 3 - (1.93)

Substituting the resulting expressions for B5 + and B7 + into
Eq. (1.81) and considering condition (1.59), we have

(1.94)
B8a - 4 .B (j,! 2+ (,1,.9L ) B1, -

0

where 8: . B B 0, --.2(7", H--) , -2A "

B,9 B+B-38 +B', Bn - H+B+

In this expression coefficientsB 8 , B9 , Bib, and B11 are
uniquely defined and the problem thus reduces to the solution of
this equation in a3+. To solve it, we can use, for instance, the
method of tangents or chords [181. In solving this equations we
must find only the values of a3+ that satisfy conditions (1.77).

By finding a3+ and then the 61+ corresponding to it, and by
verifying that conditions (1.77) have been satisfied for the
values of a + and B1+ thus obtained, let us dwell on the values for
which conditions (1.77) are satisfied. If there are no such
values, then let us move on to considering the next points in
formulas (1.82).

Let us determine for the values a3+ and 61+ satisfying condi-
tions (1.77) the coefficient N1 2 corresponding to it based on
Eq. (1.92). Then, let us substitute the values of a3+ into /50
(1.86) and let us define the sign of the function C. If C < 0,
a3+ and 81+ are left for further investigation, but if C > 0, they
are discarded. But if after all this analysis it turns out that
there are several solutions to Eq. (1.94) for which all the above-
listed conditions are satisfied, then let us dwell on the solution
for which the coefficient N12 is at a minimum.

The value of a+ and 8+ for the remaining points of formulas
(1.82) at the instant of staging are determined directly. By
verifying condition (1.77) for these points, we discard the point
for which these conditions are not satisfied. For the remaining
points we find the sign of function C (see Eq. (186)). For points
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2 and 3 we must have C > 0, and for points 4, 5, 6, and 7 there
must be C < 0. By verifying this analysis, we discard the points
for which the sign of function C does not correspond to the re-
quired sign.

Let us find for the remaining points the coefficient N12
corresponding to them, using the formula

B, (B+a+3+ A 1 a+2 + B6a + + T12- H-) (1.95)

B-a+2+(B

Knowing N12, we can find the coefficient B7+ of Eq. (1.81).
Obviously, if we take as the criterion of the optimal control the
control for which the coefficient B7+ is the smallest, the
function (1.81) will take on the largest value with respect;to
the control, that is, the control will be optimal. By thus finding
the optimal control and the coefficient N12 corresponding to it,
we can find the multiplier X5+ by formula (1.90).

Solution of the Problem

In the preceding sections we outlined a method for determining
the optimal control at a fixed instant of time T. By thus deter-
mining the optimal control, we can now find the multipliers 43,
4' and 45 appearing in this system of equations (1.64).

They are defined from the conditions

2Aka + Elk + FlkP=1 (2a- a, In - a, ax)+

+ 3 (2 ny,- nlmIn - nYmax) (1. 96)m t (1.96)

+4 4 (2Axa + E2.t) + 5(2A- a + Ek);

Fka + Nl, = 2 (2 -im, - . )+ ± N 2t + N"

Here k = 1 and k = 2 after staging.

As we can easily see, the two equations contain five unknowns. /51
Since there are two control functions, motion is possible only
either within the domains (1.46) - (1.50) or else along one or
two of the bounds of these domains. Hence it follows that the
maximum of the multiplier *j (j = 1, 2, 3, 4, and 5) simultaneously
nonzero cannot exceed two.

11 :0, if for the selected optimal control E1 = 0;

2 I 0, " " " " " " 52 = 0;
43 o, I 1i ItY I t = 0;44 0, i" " t I I "4 = 0;

45 o, " " 5 = 0.
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The multipliers are equal to zero in all the remaining cases.

Next, let us integrate the systems (1.45) and (1.64) with the
optimal values of a and B thus obtained, and also .p In the
next stage of integration the entire process for de ermining the
optimal controls a and B, and also the values of 4j is repeated
over again, and so on.

The conditions for the discontinuity of the multipliers Xi
(i = 1, 2, 3, 4, 5) at the instant of insertion are as follows:

-- at the bound p4 = 0

3 3 (1.97)
5 = V2 I

-- at the bound P5 = 0

~2 F I

I /h (1.98)ol (h ) I

Now let us formulate the general solution to the problem.

Since the function H is homogeneous, the initial value of one
of the multipliers Xi can be selected arbitrarily, for example,

X50 = 1 (1.99)

One of the multipliers Xi, for example,X140, can be determined
from the condition:

- l.Vf I t X:,lf2 -:- :tof3 + X50fs(
,4- f (1.100)

When the systems (1.45) and (1.64) are integrated, we have /52
ten arbitrary constants, and the time of completion of insertion
tf is also unknown.
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To determine the 11 unknowns, we have 11 relations (1.52),
(1.53), (1.99) and (.100). Integrating the systems (1.45) and
(1.64) under the initial conditions (1.52), (1.99), nhd_ (11i0),
and using, for example, Newton's method [18] to determine 110,

12 0 , and 13 0 , we satisfy the conditions (1.53).

In solving the problem with constraints as on the first-order
phase coordinates, the initial value of one of the multipliers Xi,
for example, 110, is selected so that condition (1.59) is satis-
fied at the instant of insertion at the bound E4 = 0, and then by
selecting the number v, let us satisfy the conditions (1.59) at
the instant of insertion at bound 5 = 0 and the number vi
(equally with 12 0 and 13 0 ) is determined on the condition that
the conditions (1.53) are satisfied.

First, let us dwell on the solution to the boundary value
problem without referring to the constraints on the phase
coordinates.

Suppose that in the first approximation of the initial multi-
pliers X1 0, A20, and A3 0 we assumed A'1 0, X'2 0 and I'30, and that
the resulting mismatches of the boundary conditions corresponding
to this approximation are as follows:

AL=o-Lf,

where V, e, and L are the valuesodf V, e, and L obtained by in-
tegrating the systems(l.45) and (1.64) at the instant h = hf.

Varying iA'l, A'2 0 , and I'3 0 by a sufficiently small quantity,
let us find at the instant h = hf the partial derivatives

OV OV CV 00 o0 0 OL OL L

1,0o ao O30 1 OA20  10 o ) , ),2)

Knowing the partial derivatives, we can compute the correction
AX' 1 0, AX'2 0 , and:AX' 3 0 to the individual values A'10, A' 2 0 , and

A'3 0 , for example, by Newton's method, thereby solving theosystem
Of three,,a(gebraic ~inhomogeneous equations

018 6V _ ,+ 0V A . O; i(AV =

-0 AX 0 AL= 0.
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The process is repeated until the required accuracy is reached. /53

The quantity E (0 < E < 1) is selected on the condition that
the solution of the boundary value problem converges, where the
closer we come to the assigned boundary conditions, the closer
E is taken to 1. The speed with which the optimal solution of this
problem is determined depends on the proper choice of e.

If the first approximation is sufficiently good, we can assume
E = 1. But if it is far from the required value, the value of
a must be taken closer to zero, by increasing its value from one
approximation to the other.

If the problem is solved with reference to constraints on the
phase coordinate, the process of solving the boundary value prob-
lem is somewhat more complicated, since in this case, in addition
to everything else, the conditions of discontinuity at the docking
moment must be satisfied. In turn, the new multipliers v and V1
will appear, which also must be determined from the solution to
the boundary value problem.

To solve this problem, it is useful first to solve the prob-
lemuwithout reference to the constraints on the first-order phase
coordinates. Then, by assuming to the first approximations the
resulting values of X1 0 , 120, and X3 0, and revising X1 0 , X20, X0 ,v, and vl, we satisfy all the conditions of discontinhity at the
moment of docking and the boundary conditions at the right
endpoint of integration.

Let us consider the solution to this problem more closely.

Suppose that we adopt as the first approximation of the
initial multipliers 110, 120, and X 0 , the quantities X'1 0 , '20,
and X'3 0 , and suppose that the function H+ is not equal to zero
at the moment of docking. By varying X'1 0 by a' sifficientlyismall1
quantity, at the moment of docking we find the partial derivative

aH

3'+ . The multipliers i 2 0 -andlX' 3 0 are'not yet varied.

By knowing the partial derivative, we can compute the cor-
rection 'l10 for the initial value X'10 based on the formula

H+

The process is repeated until the required accuracy in H+ is
attained. The value of v is revised similarly, only it is carried
out now on the condition that the(discontinuity is satisfied at
the moment of second docking, namely, by assigning the approximate
number v0 at the instant of first docking, we determine H+ at the
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moment of the second docking, therefore varying v0o by a suffi-
ciently small quantity, let us determine;the partial derivative:

- 0 at the moment of second docking. Then the correction to the

initial value vo will be determined by the formula

H+
Avt," -- es dl O /v °OH+/0vo

The process is repeated until the required accuracy in H+ is /54
attained at the moment of second docking.

The value of v1 is revised on the condition that, when h = hf,
condition V = Vf is satisfied, based on the formula

oV/dv 1 o

The trajectory thus selected satisfies all the conditions of
discontinuity at the moment of docking and the two boundary condi-
tions (1.53) at the right endpoint of integration.

Then, by varying X'2 0 and X'0O by a small enough quantity and
by solving the analogous problem In the selection of X10, v, and
v1 , let us determine the partial derivatives

do dO OL dL

Knowing the partial derivatives we can compute the corrections
AX'2 0 and AX' 3 0 to the initial values X'2 0 and X'3 0, by solving the
following system of two equations:

7 +77 A'X-+4+ 0
4 

0 ;
0d2o .OX3

o_OL O + 4AL=O.

The process is repeated until the required accuracy in satis-
fying the boundary conditions (1.53) is attained).

The values of the numbers El, E2, 63 and e4 (O< Ei < 1, i =
= 1, 2, 3, 4), just as E, are selected on the condition that the
process of solving the problem converges.
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Particular Cases of the Overall Problem of Optimizing the Trajec-
tory of LV Insertion into AES Orbit

First let us examine the case when an LPRE is used as the
power plant in both the first and second stages. We know that the
optimal trajectories of an LV with LPRE are(,characterized by its
rapid departure from the dense atmospheric layers, which enables
us to remove the constraints (1.49) and (1.50). Thus, Eqs. (1.56)
and(l.57) will be of the form

dH ~ (i= 2, 3, 4, 5); (1.102)
dxi Oxi

dH L 42 di (u= , ). (1.103)
du ' u Ou du

Condition (1.59) in this case (with the exception of the mo- /55
ment of staging) will be automatically satisfied, and conditions
(1.60) and (1.61) will not be used.

Eqs. (1.64) can be written thusly

dfi df 2  df3 df4 d3.
--- -Vk 2 -A 3 -- A f 4 • d'

SO 2 d2 d3  V Od

T he -a s o do V

4 Oh oh dOh

A5 Om 2dn o "

Of/1 Of 2 0/3 df 4 OE., Of Of2 ors
The partial derivatives 6v' v' ov' ov' ' do' do do'

Sr0f f Of f fare determined from the
S dh Oh Oh ' Oh Om Om Om

same formulas as in Eqs. (1.64). The engine thrust in both the
first and second stages will be determined by Eq. (1.67), and
its partial derivatives will be of the form

dP - dP dPS-0, O =-g oeoS a OQ (1.105)dV dOh "i

But the formulas (1.65) and (1.66) are not used.

The coefficient All, E1 1 , F1 1 , Fll, N1 1 and T11 of Eq. (1.70)
will be of the form of the corresponding coefficients A12 , E1 2,
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F1 2 , N1 2 , and T12 of Eq. (1.71). Their only difference will be
that in the computation of coefficients with subscripts "ll" we
must take all the characteristics of the LV and the power plant
corresponding to the first stage, while when computing the co-
efficients with subscripts "12" we must take the corresponding
characteristics of the LV and the power plant of the second stage.

Because the constraints (1.49) and (1.50) are removed, the
case of considering the motion of an LV along the bounds C4 and

5 disappears and, naturally, the formulas (1.72), (1.73), (1.74),
(1.75), (1.80), (1.81), (1.82), (1.91), (1.92), (1.93), (1.94),
(1.95), (1.97), and (1.98), just as the solution of the boundary
value problem with reference to the constraints on the first-order
phase coordinates, will become unnecessary.

In the equations (1.96), considering the foregoing, we must
adopt 4 = P5 = 0. All the remaining formulas, which are not
mentioned here, are used in the form in which they are represented
in the method given earlier.

In conclusion, let us dwell on the insertion of an LV into /56
an AES orbit, beginning with the end of the atmospheric section
of the flight when LPRE are used in the second and third stages,
and adopting as the specific thrust the specific thrust of the
LPRE in vacuo.

In.this case, system (1.45) becomes:

7=: JMO -'- sin O= fl;
m r 2

o gopa Cos I+ V os f2;
mV r2V r 1 (1.106)

L =1 0 V cos = f/3;
r

h= Vsi = f 4;

M==I

Naturally, in this formulation of the problem we must con-
sider only the constraints (1.46) and (1.47), while we must
discard the constraints (1.48), (1.49) and (1.50).

The system of conjugate equations (1.56) in this case will be
of the form:

_ H (i 1, 2, 3, 4, 5). (1.107)

52



Let us write it in expanded form:

An~ropa cr cos a \ roI=k 2 ( J cos- - rCos -s -sin 0;
ImV2 2V2 r r

=2 X, cos 0 - k2 Vsin O+ ro -V sin 0- 4V cos 0;
/2 r 2V r r

1= (1.108)

J'4 X,- 2 sin0- r2 2A V COS 0 +ar V COS;
,
3  

r2V r2 .2

m2 V

The function H both before separation as well as after sepa-
ration will be of the form

H=Fa+N+NpT, (1.109)

where

F)= lO g O

mV'

N 1
0g0 X;
m

T - - - , , -L sin 0+;,2 V
r r r2V5

/57

J 0 go
Since mV > 0, the sign of coefficient F is uniquely deter-

mined by the sign of multiplier X2 . Since B > 0, it is clear that
the sign of FB will be characterized by the sign of X2 . And since
a appears linearly in the function H, the optimal control in terms
of the angle of attack a can take on: only limiting values, where
if X2 < 0, we must taken aopt = amin; if X2 > 0, aopt = amax.

Similarly, we can show that only the limiting values defined
as follows can be optimal controls in terms of the mass flow rate
of fuel 8: Bopt = min, if Fa + N < 0; Bopt = Bmax, if
Fa + N> 0.

Thus, the optimal control in any fixed moment of time T (ex-
cept for the staging moment) is uniquely defined.
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Now let us dwell on selecting the optimal control at the
instant of staging. In the case examined here, the problem of
determining the optimal control at the instant of staging is solved
quite readily.

Actually, at the instant of staging only the multiplier X5
suffers a discontinuity (see Eq. (1.83)). This multiplier appears
in the function H in terms of multiplier N. Since the angle of
attack a is entirely defined by the sign of multiplier X2 (and
this multiplier at the instant of staging is continuous), it is
clear that the angle of attack a+ at the instant of staging is
determinedouniquely based on the method indicated above.

By computing the coefficient T+ (we know that T+ = T-, since
the rocket parameters do not appear in the multiplier T), we find
its sign. T+ < 0, then because H+ = 0, it follows that
(F+a+ + N+)B+ > 0, or expressed another way:

F+a+ + N+ > 0.

And this means that we must take 6+ = max as the optimal
control at the instant of staging.

But if T+ > 0, we must take + = min as the optimal control.

The coefficients N+ and X5+ corresponding to the control thus
selected are determined by the formulas

T++ F a+
N+= + '

1.3. Method of Inserting Satellite into Orbit Without Final /58
Combustion of Fuel

Let us examine the case when a satellite is inserted into
orbit with a continuous powered trajectory section of the launch
vehicle. Obviously, the shape of the orbit and its distance at
different points from the Earth's surface will depend on the
selection of the elements of the end of the powered section, and
also on the adopted law of launch vehicle motion. For many kinds
of satellites it is important that their orbital perigee lie as
high as possible. Accordingly, we will seek the maximum altitude
of the end of the powered section for an assigned final Velocity
and assigned direction of this velocity.
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We will not dwell.on methods of calculating the powered sec-
tion itself, assuming it to be known to the reader from already
published studies (for example, [5]).

Let us determine the optimal law of launch vehicle motion
along the powered section, that is, let us find the optimal pro-
gram of variation in its pitch angle 4pr, without referring to the
variable fuel consumption. The methods examined below areLia
further elaboration of the study [46]. They permit the quite the
quite simple selection of 4pr virtually without loss of accuracy.
The optimal 4pr found can be used in an exact calculation of the
powered section for a specific launch vehicle.

Optimal Program for Angle of Pitch with Constant Fuel Consurhption
over the Powered Section

We will start from the system of differential equations of
motion that take into account the curvature of the Earth and the
variation in gravity with altitude [46]. For the case of constant
fuel consumption this enables us to obtain a simple analytic
method of calculation:

du
-- p cos Y - v"x;

dt

dw psiny+ 2V2y g- o:
dt

d(1.110)

dy

dt

where
R

g0 is the acceleration of the force of gravity at zero altitude;
R is the Earth's radius; p is launch vehicle acceleration; and
p is the angle of pitch.

The system of equations (1.110) can be readily obtained from /59
the ordinary equations of rocKet plane motion written in an ab-
solute rectangular system of coordinates with the origin at the
launch point, the Oy axis directed upward along the vertical, and
the Ox axis directed toward the powered section of the trajectory.

By expanding in power series the expressions for the pro-
jections of gravitational accelerations
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R2x

gx-- go g [x2 + (y + R)2] 3/2 '

R 2 (y + R)
gy= go [x 2 + (I + R)213 ,

and by limiting ourselves to the first terms in the expansion, we
get

g, = go- 2go .

In the particular case when we are considering a two-stage rocket,
we will take as the initial point the end of the powered section
of the first stage, designating it by the subscript "1".

Let us set up the variational problem of finding the function
4(t) for assigned boundary conditions that give a maximum to the
altitude

2

hf = yf + 2R' (1.11)

where the subscript "f" refers to the elements of the end of the
powered section.

It should be noted that this problem is equivalent to the
problem of determining the function q(t) that gives a maximum for
the velocity at assigned altitude [46]. From the standpoint of the
calculus of variations, this is a problem of the conditional ex-
tremum with differential relations. The equations of motion
(1.110) of the launch vehicle are the relations.

Let us set up the Lagrangian function

H -_ x, - 21 + X3 3 + "4 4,

where Xl, X2, X3 , and X4 are certain differentiable functions with
respect to time t:
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d,-, +v X- pcosY ;
dr-

dt

dx
dtS_= lit

dy

The functional whose maximum we seek is of the form /60

/=hf HdI. 
(1.112)

0

Let us write the first variation for I:

if.

8 .= Hh + -Hdt, (1.113)

where

l - ry --- ,x:

6H H Zu +H'w 1-H,ay f If., x H',*u .

-t Hz w+ Hy + Hx -- H-8.

Canceling out the derivatives 6u, 6w, 6y, and 6k by integrating
the corresponding expressions by parts, we get

f 0

f

0

(2v ,'4) 6Y P (i, sin -- cos ) ] dt. (1.114)

The extremal value of the functional I corresponds to the
zero-equality of its first variation 61.

By setting equal to zero the multipliers 'appearing under the
sign of the integral in front of the variations 6u, 6w, 6x, and 6y,
we get a system of differential equations for the quantities X1,

X2, X3, and X4 and the final relation for 4:
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1 + 3 =0;

A-1 0; (1.115)
;'4 + 2V2)2 = 0;

1asin c--),cos?=O. I

From the last equation we have

l (1.116)
tg =-

The solution to the system of equations (1.115) is of the /61
form:

1 = C cCos t -- Ca sin vt;

h= C 3 sh vt + C4 ch V 2vt; (1.117)

X3,= CY sin vt - C 2v cos vt;

X4 = - C 1/vch 1/2vt - C, I2v sh 1/2vt.

Eqs. (1.115) and formula (1.116) are analogous to the cor-
responding expressions in [46]. Let us select the following
boundary conditions. At the end of the powered section we will fix
the velocity vector (uf, wf), and at the initial point -- the
modulus of velocity, that is, at the end of the powered section of
the first stage the following relation must be satisfied

, u' I coIst, ! (1.118)

which gives for the variations 6ul and 6wl the relation

Bu, -- W-- (1.119)

We will also fix the coordinates x and y of the initial point.

This selection of the boundary conditions simplifies the solu-
tion of the problem. It is quite justified, since assigning a
constant velocity modulus at the initial point instead of the
functional dependence of velocity on altitude and angle of inclina-
tion of the orbit is based on compensating for the effect of change
in velocity at the initial point on the insertion altitude hf by
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the influence of the corresonding change in altitude (in angle)
at this same point.

It is convenient to take as the initial point the end oft
the powered section of the first stage, since in the first stage
of flight occurring in the dense atmospheric layers, pr is
selected on the condition that the angles of attack are near-zero,
and not on the condition that the maximum altitude of the insertion
point is obtained.

Let us examine the case of a two-stage launch vehicle. As the
initial point we will take the end of the powered section of the
first stage. We will assume that the program for this section is
assigned, more exactly, that is depends on one parameters -- the
maximum angle of attack am. By selecting am the direction of the
tangent to the trajectory at the beginning of the flight of the
second stage is determined, that is, the angle 01.

Depending on the values of the angle of the velocity vector
eextra obtained by solving the variational problem in each specific
case, we will rotate the entire first section of the tra'jectory so
that the angle 01 coincides with 01 extra and then we will repeat
the calculation with the revised values of v1l, xl, and yl. It
can be assumed that this method gives a better approximation to
the extremal program for the entire powered section as a whole.

By substituting 6ul from Eq. (1.119) into the expression /62
(1.114) and considering that the variations 6uf and 6yf at the end
of the powered section are equal to zero, and Zxf and 6yf are
arbitrary, we get

11

Since wl = v1 sin e1 and ul = v1 cos e1,

tg 21 t 1; (1.120)
Sf = - 1; )

'(1.121)

On the other hand, from system (1.118) it follows that when t = 0,
we have

SC,, 
(1.122)

x21= C,59
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where t== tf

klf-- C, cos Vtf- C 2 sin vtf;

X2z C3sh}/ v7f + C4ch 1I/ tVf; (1.123)
A, = Cjv sin vtf- Ca cos vtf,

A4 f= - C3 / 2v ch V 2 vtf- C, V 2v sh /2vtf. j

From the conditions (1.121) and (1.23) we obtain two equations
for the four unknown coefficients Cl, C2, C3 , and C4:

CVSl Vtf-C 2 V COS tf= R (1.123')

C, V 2v ch V/2 vtf+ C 4 V 2V sh I/V2Vtf= 1

or, by solving (1.123'), for C2 and C3 , we have

xf + Cjv sin vtf
R

C' = v cos vtf

1-- C4 
/ 2V -h 1 ' 2vtf

-y'v ch '12, tf

We will find the two equations we lack by using the system
of equations of motion (1.110). From the first two we get

p sin Tdt - gotf-- wf+ At

-, =tg tf (1.12 4)
Sp COS dt - uf+ Au

0

where

'f are the corrections j that
AW 2vydt I allow for the nonparala-

S , lelity of the field of (1.125)
Au -v gravity and the change

Au=v xdt I in acceleration with
0 altitude;
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X2 C3 sh I/ 2vt + C4 ch V"9vt9= arctg =arctg
Xl Ci cos vt -C2 sin vt

The quantities wf and uf in (1.124) are assigned.

Considering that Aw and Au are small and act as corrections,
to the first approximation we can neglect them. Then (1.124) can
be considered as one of the two equations we lacked for determining
the arbitrary constants Cl, C2, C3 , and C4 (or instead of C4, we
can take tg 01, since C4 = Cltg 61). The fourth and last equation
is condition (1.118), in which ul andtwl are the numerator and
denominator of (1.124). Thus, to the first approximation in
solving the problem of selecting the program c(t) that gives the
greatest altitude for the powered section, with assigned values of
the projections of velocity uf and wf, we must determine the quan-
tities Cl, C2, C3 and tg 61 ,,by using Eqs. (1.123), (1.124) and
(1.118). To do this, we can assign several values of Cl (in terms
of which all the remaining unknowns C2, C3 , and C4 are expressed)
and for each of them find from (1.124) by selection the 01 cor-
responding to it. By then substituting the pairs of Cl and 81
we have found into Eq. (1.118), from the series of resulting vl
we select the value corresponding to the assigned value. Next, we
compute the approximate values of the coordinates R and Y based
on the formula

X = X1-+ unt +- (ti p cos;

Y=y Y, -w t + dT1 '(p sin y - go)di a (1.127)

Let us use the resulting values x(t) and (t) for computing
the corrections Au and Aw with which the entire problem is now
solved in the second approximation. Simultaneously the assigned
v1 , xl, and yl are revised, as stated above. In addition, by using
xf and yf, we can, if desired, obtain more exactly the assigned
direction of the velocity vector at the end of the power section
(for assigned 8f = 0), and revise wf using the formula

R-4-f (1.128)

Two approximations are sufficient for the solution to the /64
problem. The final values of the coordinates are calculated by
the formulas
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x=x; +u;+t d p cos d + Ax;
o (1.129)

YY+Wut+d1Sp sirl pd-- -
0 0

Here x'l, y1i, u'1 , and w'1 are the following values corrected
through the first (or second, if required) solution to the problem:

6 I 12 o

0I
S h (1.130)

Ay==S dq S 2v2ydt.

To verify these working results, it is useful to integrate
the equations of motion (1.110) with the above-obtained values of
4pr(t).

We can considerably::simplify the problem in practice without
reducing accuracy if the program 4pr(t) is found for a plane Earth
and a parallel field of gravitational force, and if in the
equations of motion (1.110), we take into account all the addi-
tional terms, regarding them as corrections -- certain functions
of time.

For the plane Earth, instead of (1.24), we get

p sinarctg + tg or) di- tf- wft- Aw
W1 C2 (1.131)

-tg 0 - o I
Ul

pcosarctg + tgO )dt-uf+ Au

0

where C2 is selected so that Eq. (11118) is satisfied and Au and
Aw are determined by .(1.125), as in the first variant of the
problem.

If it is assumed that the accleration of the launch vehicle
n0g0

p = 1 - Bt where no is the initial g-load, and 8 is the relative
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fuel consumption (B = G/G0 ), the integrals t f p sin dt and /65
tf 0
P" Lp cos dt can be written as
0

p sinarctg -+tg O )d nooC In b 2 (a )
0

+2ax+b + I In +- -+b ]

f 1 (1.32)
Spcosarctg (+ tgo, dt= - n3CC/2 ( .X02

Here
X = ax2 + bx + c;

a= l+C 2 tge0; b= -C,; x=a+bz; z=-- +tg,;C2

a= 1/ 2; b= - 2a; c= 1+a21/2 .

Based on these formulas, calculations were made for one of the
possible variants of the two-stage launch vehicle for which the
dependence of the elements of the powered trajectory section at the
moment of staging on the angle of the velocity vector, in turn
dependent on the angle of attack am, was determined in advance.

Figs. 1.7-1.9 give the altitudes at the end of the powered
section (the orbital perigee h.) as a function of Velocity vf for
its horizontal direction for three values of the relative satellite
weight Gsa/GO = 0.027, 0.036, and 0.045 (Go is launch weight). In
the same three figures are presented the curves of the apogee
altitude ha (the point most distant from the Earth) and the approxi-
mate number of satellite revolutions around the Earth during its
lifetime.

In the calculation of the insertion section it was assumed that
8 = 0.005 and no = 1.5 for the second stage. The reduction in the
payload in the corresponding variants was compensated by a pro-
portional increase in the fuel weight, and, therefore, in the
flightj time.

The curves were plotted in terms of the magnitude of velocity
at the end of the powered trajectory section vf which the rocket
attained.

Analysis of the graphs leads to the conclusion that there is
an optimal number of satellite orbits (that is, its lifetime) which
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C - -- corresponds to wholly

280km - -3500 specific values hr and
130- h in each case. For

270- 3'00 the variants under con-
2600- h sideration, the optimal

go -2500 orbits are quite elon-
25- gated ellipses, and the

24700 h 2000 oblongness increases
50o with decreasing satellite

230 -- 580 weight.
300

220
7610 7660 7710 7760 7810 c,. These calculations /67

- m/sec of the trajectories
Fig. 1.7. Dependence of h, ha, and of insertion into orbit
n on vf (Gsa/Go = 0.027). where 8 = const showed

that finding the optimal
insertion program is a laborious
process. A particularly large

h,,km' km amount of time was expended in

250 I00 computing by the trial and error
method the integrals appearing

.24 00 : in Eqs. (1.131) and obtaining the
23 0 700 - required corrections. On the

Sother hand, selection of the pro-
I A - gram and calculations of the in-

27300 I sertion trajectory can be done

20100 sufficiently accurately, since
0 7F here the optimal characteristics

7580 .7630 76807 vu,.m/sec of the orbit are determined or,
if the orbit is assigned, the

Fig. 1.8. Dependence of hn, maximum satellite weight.
he, and n on vf (Gsa/Go =
= 0.036). To accelerate the calculation

of the optimal insertion programs,
we will assume the initial equa-

S,,km tions to be in the dimensionless
hr, km n form.

200 i A I I ho
90 61g1 The initial system of equations

and the formulas for calculating the
f 7 670 optimal program (two-stage launch
170 3 vehicle) is as follows:

I I il 1i. tg Oo= o= _
7650 7700 7750 788,0 uo

uv,m / sec ,
Sp sinarctg(bt + -o)dt- gotf-- wf+ Aw

Fig. 1.9. Dependence of 0
h7, ha, and n on vf
(Gsa/GO= 0.045). pcosarctg(bt + )dt-uf+u (1.133)
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2.
V22 -- 

2 L U
2 .

Aw= 2v2 ydt;

if i (1.134)
Au= =v2 xdt;

3.
Xf=xo +of+ d pcosarctg(bnj+ 0)dni;

tf E t2f
y=yo+wio+atg d p sinarctg(bj+ 'o)d -go 2

4.f f
xf-X+;U +t df pcosarctg(bi ,r,)drj+Ax; Ay=2v2 dC ydI;

0 0

yiy;+wotf+. dt psinarctg(bn+ o)dn-gb + y; I d
0 /68

5. - Rgf (for the case of insertion when
Of = 0);

6. h= yf+ Xf
2R

The following notation was adopted in these equations:

nogo is the launch vehicle: acceleration-

no/ is the initial g-load

P, is the fuel consumption coefficient
b,to are parameters determining the program

To=tgOo is the slope of the initial velocity vector with
respect to the Ox axis

Aw, Au are the additional terms that allow for the effect
on velocity of the nonparallelity of the gravi-
tational force field and the variation in g with
altitude
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b are the coordinates of the launch vehicle calculated
without reference to corrections x and y that al-
-low for the effect of the same parameters as for
w and y

x0, Y0, w0 , u0 are the elements of the beginning of the trajec-
-tory section for which the optimal program is
-determined; the same quantities with the stroke
refer to the field of revision

xf, yf, wf, Uf are the elements of the end of the powered section,
and

hf is the altitude of the end of the power section.

The process of calculation reduces to the solution of Eqs.
(1.133) and (1.34) for the unknown b and TO , with given xO, Y0,
v0 , wf, and uf.

In the first approximation the equations are solved without
reference to the correction Aw and Au. Based on the values of u0 ,
w0 , b, and TO found, let us find the approximate valuesodfthe
coordinates x and y on the basis of which the corrections Aw, Au,
Au; and Ax are calculated. In addition, from previously prepared
graphs for the functions x0 , yo, and v0 on e0 , characteristic of
this launch vehicle, let us compute the new revised quantities
x0', Y0', and v0' based on the e0 (T) value found. With these new
values of the elements of the initial point the calculation is
repeated, that is, we again select b, TO, uO, and wo. We note
that if the initially assigned values prove to be unsuccessful,: it
is best (if we intend to obtain the horizontal direbti6n of-the /69
velocity vector vf) to revise wf by means of Eq. (1.128). The
process of approximation can be repeated several times, depending
on the required accuracy.

Finally, after carrying out all the revisions the altitude
of the powered section hf is computed.

Let us bring the integrals appearing in Eq. (1.133) to the
dimensionless form. To do this, we introduce the dimensionless
time C = t/tf.

The integrals become:

P sinarctg(bt+ro)dt=nogo' (1.35)
0

j I sinarctg(b' + To) d
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p cosarctg (bt + To)d= ngogtf'S, (1.36)

1
2= S cosarctg(b'e + vo) d;

1 -- ae
0

t p sinarctg(b+t o)dt=nogoq/, (1.37)

1 " _

I = .d 7 sinarctg(b'+ 0o)f d-- a+)
o o

Sdl p cosarctg (bt +TO)dt=ngotl1 4, (1.38)
0 o

71
di co s a r c tg (b ' +  o)

i 1 (1.39)

E1 71

I5=dt S'dl sinarctg (b'E + xo) d;

0 0 --a /70

f xdt=nogot , (1.40)
0

1

eI= \d dq cosarctg(b' + o) d;

0 0 0

tlf

f d t ydt = nogto,,
0 o (1.41)

1= S d, d p d ' sinarctg(b'e + ,o) dt;

o o

S 4 (1.42)
I=f d t1 jd . cosarctgd(b'j + -) dt.

0 0 0 0 1 - aJ
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Here: a is the fuel filling factor (a = Gmk/G01, where G0 1 and
m i is the initial weight and the weight of fuel in
the second stage), and

b' = btf (the stroke is omitted in the following).

Let us rewrite Eqs. (1.133) with reference to the expressions
obtained for the integrals II, ... , 18:

i. to wo - nngotfI + gotf + wf- Aw
Uo - nogotf12 + uf- au

A= 2v2 ydt 2v2 [otY + w - noo 5 1

i f

3. Xf = xo + Utf+ nogotI 4;

yf= yo wotf ngofJ 3 - go

4. xf= xo+ uotf+ nogo, I4 + ax; /71

4. /71-a

t2

fThis method of calculation+tf+ can be used not only for two-stage,

R +Yf\
2

The initial point (x , yo) must be selected beyond the limits
of the dense atmospheric layers, since as indicated above, the
program of the powered section is selected in the dense layers
independently of the solution of the variational problem.

This method of calculation can be used not only for two-stage,

but even three-stage rockets. By a stage we mean sections df a
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